Loading…

Detecting Reporting Errors in Data from Decentralised Autonomous Administrations with an Application to Hospital Data

Administrative data sources are increasingly used by National Statistical Institutes to compile statistics. These sources may be based on decentralised autonomous administrations, for instance municipalities that deliver data on their inhabitants. One issue that may arise when using these decentrali...

Full description

Saved in:
Bibliographic Details
Published in:Journal of official statistics 2018-12, Vol.34 (4), p.863-888
Main Authors: van Delden, Arnout, van der Laan, Jan, Prins, Annemarie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Administrative data sources are increasingly used by National Statistical Institutes to compile statistics. These sources may be based on decentralised autonomous administrations, for instance municipalities that deliver data on their inhabitants. One issue that may arise when using these decentralised administrative data is that categorical variables are underreported by some of the data suppliers, for instance to avoid administrative burden. Under certain conditions overreporting may also occur. When statistical output on changes is estimated from decentralised administrative data, the question may arise whether those changes are affected by shifts in reporting frequencies. For instance, in a case study on hospital data, the values from certain data suppliers may have been affected by changes in reporting frequencies. We present an automatic procedure to detect suspicious data suppliers in decentralised administrative data in which shifts in reporting behaviour are likely to have affected the estimated output. The procedure is based on a predictive mean matching approach, where part of the original data values are replaced by imputed values obtained from a selected reference group. The method is successfully applied to a case study with administrative hospital data.
ISSN:0282-423X
2001-7367
2001-7367
DOI:10.2478/jos-2018-0043