Loading…
ON THE σ-NILPOTENT NORM AND THE σ-NILPOTENT LENGTH OF A FINITE GROUP
Let G be a finite group and σ = {σi| i ∈ I} some partition of the set of all primes $\Bbb{P}$ . Then G is said to be: σ-primary if G is a σi-group for some i; σ-nilpotent if G = G1× … × Gt for some σ-primary groups G1, … , Gt; σ-soluble if every chief factor of G is σ-primary. We use $G^{{\mathfrak{...
Saved in:
Published in: | Glasgow mathematical journal 2021-01, Vol.63 (1), p.121-132 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a finite group and σ = {σi| i ∈ I} some partition of the set of all primes
$\Bbb{P}$
. Then G is said to be: σ-primary if G is a σi-group for some i; σ-nilpotent if G = G1× … × Gt for some σ-primary groups G1, … , Gt; σ-soluble if every chief factor of G is σ-primary. We use
$G^{{\mathfrak{N}}_{\sigma}}$
to denote the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N. If G is σ-soluble, then the σ-nilpotent length (denoted by lσ (G)) of G is the length of the shortest normal chain of G with σ-nilpotent factors. Let Nσ (G) be the intersection of the normalizers of the σ-nilpotent residuals of all subgroups of G, that is,
$${N_\sigma }(G) = \bigcap\limits_{H \le G} {{N_G}} ({H^{{_\sigma }}}).$$
Then the subgroup Nσ (G) is called the σ-nilpotent norm of G. We study the relationship of the σ-nilpotent length with the σ-nilpotent norm of G. In particular, we prove that the σ-nilpotent length of a σ-soluble group G is at most r (r > 1) if and only if lσ (G/ Nσ (G)) ≤ r. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089520000051 |