Loading…

Tensor-network strong-disorder renormalization groups for random quantum spin systems in two dimensions

Novel randomness-induced disordered ground states in two-dimensional (2D) quantum spin systems have been attracting much interest. For quantitative analysis of such random quantum spin systems, one of the most promising numerical approaches is the tensor-network strong-disorder renormalization group...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2020-10, Vol.102 (14), Article 144439
Main Authors: Seki, Kouichi, Hikihara, Toshiya, Okunishi, Kouichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel randomness-induced disordered ground states in two-dimensional (2D) quantum spin systems have been attracting much interest. For quantitative analysis of such random quantum spin systems, one of the most promising numerical approaches is the tensor-network strong-disorder renormalization group (tSDRG), which was basically established for one-dimensional (1D) systems. In this paper, we propose a possible improvement of its algorithm toward 2D random spin systems, focusing on a generating process of the tree network structure of tensors, and precisely examine their performances for the random antiferromagnetic Heisenberg model not only on the 1D chain but also on the square- and triangular-lattices. On the basis of comparison with the exact numerical results up to 36 site systems, we demonstrate that accuracy of the optimal tSDRG algorithm is significantly improved for the 1D and 2D systems in the strong-randomness regime.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.144439