Loading…
Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning
A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were ob...
Saved in:
Published in: | IEEE sensors journal 2021-01, Vol.21 (2), p.1453-1460 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203 |
container_end_page | 1460 |
container_issue | 2 |
container_start_page | 1453 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Rente, Bruno Fabian, Matthias Vidakovic, Miodrag Liu, Xuan Li, Xiang Li, Kang Sun, Tong Grattan, Kenneth T. V. |
description | A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were obtained from the optical signal monitored, providing the input to a supervised learning algorithm. The results achieved show a good match with those from conventional techniques, achieving a ~2% accuracy with a ~1% SOC resolution. The system has been successfully applied to a 'proof of concept' demonstrator, using a battery-operated train, illustrating as a result the way in which the real-time SOC estimator could be employed to enhance safety in the growing electrical vehicle industry. |
doi_str_mv | 10.1109/JSEN.2020.3016080 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2471916514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165856</ieee_id><sourcerecordid>2471916514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYhNJNYuM7GT2EtataUowCIgsYucxGlTNU6x3UX_HkdBrOahc-dxg-AeYYYI4uk1X77PIohgRgET4HARTDCOOcGU8cshp0AYTb-vgxtr9wAo0jidBF3Wul176sim1-FcOqfMOcyddIr0DVnspNmqcGld20nXG09YVYceXc3XZCxyZ2Srw1xp6wGp63DZHQ_9udXb8E1Wu1arMFPSaN-4Da4aebDq7i9Og6_V8nPxQrKP9WbxnJGKcuZIwuMEy0ogjSGSNYgm4SkTQqpEcYkVhRpjFlEeCaYwlaxJSi5iBCyhLCOg0-BxnHs0_c9JWVfs-5PRfmURsRQFJjEyT-FIVaa31qimOBr_pzkXCMXgajG4WgyuFn-ues3DqGmVUv_8MNDfTH8ByOpxpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471916514</pqid></control><display><type>article</type><title>Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rente, Bruno ; Fabian, Matthias ; Vidakovic, Miodrag ; Liu, Xuan ; Li, Xiang ; Li, Kang ; Sun, Tong ; Grattan, Kenneth T. V.</creator><creatorcontrib>Rente, Bruno ; Fabian, Matthias ; Vidakovic, Miodrag ; Liu, Xuan ; Li, Xiang ; Li, Kang ; Sun, Tong ; Grattan, Kenneth T. V.</creatorcontrib><description>A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were obtained from the optical signal monitored, providing the input to a supervised learning algorithm. The results achieved show a good match with those from conventional techniques, achieving a ~2% accuracy with a ~1% SOC resolution. The system has been successfully applied to a 'proof of concept' demonstrator, using a battery-operated train, illustrating as a result the way in which the real-time SOC estimator could be employed to enhance safety in the growing electrical vehicle industry.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3016080</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bragg gratings ; dynamic time warping ; Fiber Bragg grating ; Lithium ; Lithium-ion batteries ; Machine learning ; Optical communication ; Optical fiber sensors ; Real time ; Rechargeable batteries ; Signal monitoring ; State of charge ; state-of-charge estimation ; Strain ; strain sensor ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE sensors journal, 2021-01, Vol.21 (2), p.1453-1460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203</citedby><cites>FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203</cites><orcidid>0000-0003-2250-3832 ; 0000-0003-4675-3991 ; 0000-0001-6657-0522 ; 0000-0002-9192-4254 ; 0000-0002-1536-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rente, Bruno</creatorcontrib><creatorcontrib>Fabian, Matthias</creatorcontrib><creatorcontrib>Vidakovic, Miodrag</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Sun, Tong</creatorcontrib><creatorcontrib>Grattan, Kenneth T. V.</creatorcontrib><title>Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were obtained from the optical signal monitored, providing the input to a supervised learning algorithm. The results achieved show a good match with those from conventional techniques, achieving a ~2% accuracy with a ~1% SOC resolution. The system has been successfully applied to a 'proof of concept' demonstrator, using a battery-operated train, illustrating as a result the way in which the real-time SOC estimator could be employed to enhance safety in the growing electrical vehicle industry.</description><subject>Algorithms</subject><subject>Bragg gratings</subject><subject>dynamic time warping</subject><subject>Fiber Bragg grating</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Optical communication</subject><subject>Optical fiber sensors</subject><subject>Real time</subject><subject>Rechargeable batteries</subject><subject>Signal monitoring</subject><subject>State of charge</subject><subject>state-of-charge estimation</subject><subject>Strain</subject><subject>strain sensor</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEqXwAYhNJNYuM7GT2EtataUowCIgsYucxGlTNU6x3UX_HkdBrOahc-dxg-AeYYYI4uk1X77PIohgRgET4HARTDCOOcGU8cshp0AYTb-vgxtr9wAo0jidBF3Wul176sim1-FcOqfMOcyddIr0DVnspNmqcGld20nXG09YVYceXc3XZCxyZ2Srw1xp6wGp63DZHQ_9udXb8E1Wu1arMFPSaN-4Da4aebDq7i9Og6_V8nPxQrKP9WbxnJGKcuZIwuMEy0ogjSGSNYgm4SkTQqpEcYkVhRpjFlEeCaYwlaxJSi5iBCyhLCOg0-BxnHs0_c9JWVfs-5PRfmURsRQFJjEyT-FIVaa31qimOBr_pzkXCMXgajG4WgyuFn-ues3DqGmVUv_8MNDfTH8ByOpxpQ</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Rente, Bruno</creator><creator>Fabian, Matthias</creator><creator>Vidakovic, Miodrag</creator><creator>Liu, Xuan</creator><creator>Li, Xiang</creator><creator>Li, Kang</creator><creator>Sun, Tong</creator><creator>Grattan, Kenneth T. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2250-3832</orcidid><orcidid>https://orcid.org/0000-0003-4675-3991</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-9192-4254</orcidid><orcidid>https://orcid.org/0000-0002-1536-4195</orcidid></search><sort><creationdate>20210115</creationdate><title>Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning</title><author>Rente, Bruno ; Fabian, Matthias ; Vidakovic, Miodrag ; Liu, Xuan ; Li, Xiang ; Li, Kang ; Sun, Tong ; Grattan, Kenneth T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bragg gratings</topic><topic>dynamic time warping</topic><topic>Fiber Bragg grating</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Optical communication</topic><topic>Optical fiber sensors</topic><topic>Real time</topic><topic>Rechargeable batteries</topic><topic>Signal monitoring</topic><topic>State of charge</topic><topic>state-of-charge estimation</topic><topic>Strain</topic><topic>strain sensor</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rente, Bruno</creatorcontrib><creatorcontrib>Fabian, Matthias</creatorcontrib><creatorcontrib>Vidakovic, Miodrag</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Sun, Tong</creatorcontrib><creatorcontrib>Grattan, Kenneth T. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rente, Bruno</au><au>Fabian, Matthias</au><au>Vidakovic, Miodrag</au><au>Liu, Xuan</au><au>Li, Xiang</au><au>Li, Kang</au><au>Sun, Tong</au><au>Grattan, Kenneth T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>1453</spage><epage>1460</epage><pages>1453-1460</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were obtained from the optical signal monitored, providing the input to a supervised learning algorithm. The results achieved show a good match with those from conventional techniques, achieving a ~2% accuracy with a ~1% SOC resolution. The system has been successfully applied to a 'proof of concept' demonstrator, using a battery-operated train, illustrating as a result the way in which the real-time SOC estimator could be employed to enhance safety in the growing electrical vehicle industry.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3016080</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2250-3832</orcidid><orcidid>https://orcid.org/0000-0003-4675-3991</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-9192-4254</orcidid><orcidid>https://orcid.org/0000-0002-1536-4195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-01, Vol.21 (2), p.1453-1460 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2471916514 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Bragg gratings dynamic time warping Fiber Bragg grating Lithium Lithium-ion batteries Machine learning Optical communication Optical fiber sensors Real time Rechargeable batteries Signal monitoring State of charge state-of-charge estimation Strain strain sensor Temperature measurement Temperature sensors |
title | Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-Ion%20Battery%20State-of-Charge%20Estimator%20Based%20on%20FBG-Based%20Strain%20Sensor%20and%20Employing%20Machine%20Learning&rft.jtitle=IEEE%20sensors%20journal&rft.au=Rente,%20Bruno&rft.date=2021-01-15&rft.volume=21&rft.issue=2&rft.spage=1453&rft.epage=1460&rft.pages=1453-1460&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3016080&rft_dat=%3Cproquest_ieee_%3E2471916514%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-68561bc913502ad09f687499ae6e8a1c30d154238294e17a4f6b895101b0bb203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471916514&rft_id=info:pmid/&rft_ieee_id=9165856&rfr_iscdi=true |