Loading…
Numerical forecast of the upper atmosphere and ionosphere using GAIA
Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper su...
Saved in:
Published in: | Earth, planets, and space planets, and space, 2020-11, Vol.72 (1), Article 178 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Earth, planets, and space |
container_volume | 72 |
creator | Tao, Chihiro Jin, Hidekatsu Miyoshi, Yasunobu Shinagawa, Hiroyuki Fujiwara, Hitoshi Nishioka, Michi Ishii, Mamoru |
description | Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting. |
doi_str_mv | 10.1186/s40623-020-01307-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473254269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656001169</galeid><sourcerecordid>A656001169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4soOKf_gKeAJw-dL02TtscxdQ6Ggj_OIc1euo61qUkL87-3roruIjm85PH5vBf4BsElhQmlqbjxMYiIhRBBCJRBEu6OghFNUwh5ltLjP_fT4Mz7DQCDWLBRcPvYVehKrbbEWIda-ZZYQ9o1kq5p0BHVVtY3a3RIVL0ipa1_np0v64LMp4vpeXBi1NbjxXcdB2_3d6-zh3D5NF_MpstQc560IVU8z5XBCAxqljAmMoNJnBqd0DSPs9TkidIcDIdICUE1oMhiijxBTOMsZ-PgapjbOPveoW_lxnau7lfKKE5YxONIZD01GahCbVGWtbGtU7o_K6xKbWs0Zd-fCi4AKN0L1wdCz7S4awvVeS8XL8-HbDSw2lnvHRrZuLJS7kNSkF9RyCEK2Uch91HIXS-xQfI9XBfofv_9j_UJX-iK3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473254269</pqid></control><display><type>article</type><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</creator><creatorcontrib>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</creatorcontrib><description>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</description><identifier>ISSN: 1880-5981</identifier><identifier>ISSN: 1343-8832</identifier><identifier>EISSN: 1880-5981</identifier><identifier>DOI: 10.1186/s40623-020-01307-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3. Space science ; Aeronomy ; Atmosphere ; Atmosphere, Upper ; Earth and Environmental Science ; Earth Sciences ; Forecasts and trends ; Geology ; Geophysics/Geodesy ; Ionosphere ; Ionospheric electron content ; Ionospheric models ; Ionospheric storms ; Lead time ; Low altitude ; Mathematical models ; Meteorological data ; Natural history ; Numerical forecasting ; Radio signals ; Simulation ; Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate ; Space weather ; Spacecraft ; Stratospheric warming ; Total Electron Content ; Upper atmosphere ; Weather forecasting</subject><ispartof>Earth, planets, and space, 2020-11, Vol.72 (1), Article 178</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</citedby><cites>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</cites><orcidid>0000-0001-8817-0589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473254269/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473254269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tao, Chihiro</creatorcontrib><creatorcontrib>Jin, Hidekatsu</creatorcontrib><creatorcontrib>Miyoshi, Yasunobu</creatorcontrib><creatorcontrib>Shinagawa, Hiroyuki</creatorcontrib><creatorcontrib>Fujiwara, Hitoshi</creatorcontrib><creatorcontrib>Nishioka, Michi</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><title>Earth, planets, and space</title><addtitle>Earth Planets Space</addtitle><description>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</description><subject>3. Space science</subject><subject>Aeronomy</subject><subject>Atmosphere</subject><subject>Atmosphere, Upper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Forecasts and trends</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Ionosphere</subject><subject>Ionospheric electron content</subject><subject>Ionospheric models</subject><subject>Ionospheric storms</subject><subject>Lead time</subject><subject>Low altitude</subject><subject>Mathematical models</subject><subject>Meteorological data</subject><subject>Natural history</subject><subject>Numerical forecasting</subject><subject>Radio signals</subject><subject>Simulation</subject><subject>Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate</subject><subject>Space weather</subject><subject>Spacecraft</subject><subject>Stratospheric warming</subject><subject>Total Electron Content</subject><subject>Upper atmosphere</subject><subject>Weather forecasting</subject><issn>1880-5981</issn><issn>1343-8832</issn><issn>1880-5981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc9LwzAUx4soOKf_gKeAJw-dL02TtscxdQ6Ggj_OIc1euo61qUkL87-3roruIjm85PH5vBf4BsElhQmlqbjxMYiIhRBBCJRBEu6OghFNUwh5ltLjP_fT4Mz7DQCDWLBRcPvYVehKrbbEWIda-ZZYQ9o1kq5p0BHVVtY3a3RIVL0ipa1_np0v64LMp4vpeXBi1NbjxXcdB2_3d6-zh3D5NF_MpstQc560IVU8z5XBCAxqljAmMoNJnBqd0DSPs9TkidIcDIdICUE1oMhiijxBTOMsZ-PgapjbOPveoW_lxnau7lfKKE5YxONIZD01GahCbVGWtbGtU7o_K6xKbWs0Zd-fCi4AKN0L1wdCz7S4awvVeS8XL8-HbDSw2lnvHRrZuLJS7kNSkF9RyCEK2Uch91HIXS-xQfI9XBfofv_9j_UJX-iK3A</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Tao, Chihiro</creator><creator>Jin, Hidekatsu</creator><creator>Miyoshi, Yasunobu</creator><creator>Shinagawa, Hiroyuki</creator><creator>Fujiwara, Hitoshi</creator><creator>Nishioka, Michi</creator><creator>Ishii, Mamoru</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid></search><sort><creationdate>20201124</creationdate><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><author>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3. Space science</topic><topic>Aeronomy</topic><topic>Atmosphere</topic><topic>Atmosphere, Upper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Forecasts and trends</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Ionosphere</topic><topic>Ionospheric electron content</topic><topic>Ionospheric models</topic><topic>Ionospheric storms</topic><topic>Lead time</topic><topic>Low altitude</topic><topic>Mathematical models</topic><topic>Meteorological data</topic><topic>Natural history</topic><topic>Numerical forecasting</topic><topic>Radio signals</topic><topic>Simulation</topic><topic>Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate</topic><topic>Space weather</topic><topic>Spacecraft</topic><topic>Stratospheric warming</topic><topic>Total Electron Content</topic><topic>Upper atmosphere</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Chihiro</creatorcontrib><creatorcontrib>Jin, Hidekatsu</creatorcontrib><creatorcontrib>Miyoshi, Yasunobu</creatorcontrib><creatorcontrib>Shinagawa, Hiroyuki</creatorcontrib><creatorcontrib>Fujiwara, Hitoshi</creatorcontrib><creatorcontrib>Nishioka, Michi</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Earth, planets, and space</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Chihiro</au><au>Jin, Hidekatsu</au><au>Miyoshi, Yasunobu</au><au>Shinagawa, Hiroyuki</au><au>Fujiwara, Hitoshi</au><au>Nishioka, Michi</au><au>Ishii, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical forecast of the upper atmosphere and ionosphere using GAIA</atitle><jtitle>Earth, planets, and space</jtitle><stitle>Earth Planets Space</stitle><date>2020-11-24</date><risdate>2020</risdate><volume>72</volume><issue>1</issue><artnum>178</artnum><issn>1880-5981</issn><issn>1343-8832</issn><eissn>1880-5981</eissn><abstract>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s40623-020-01307-x</doi><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1880-5981 |
ispartof | Earth, planets, and space, 2020-11, Vol.72 (1), Article 178 |
issn | 1880-5981 1343-8832 1880-5981 |
language | eng |
recordid | cdi_proquest_journals_2473254269 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | 3. Space science Aeronomy Atmosphere Atmosphere, Upper Earth and Environmental Science Earth Sciences Forecasts and trends Geology Geophysics/Geodesy Ionosphere Ionospheric electron content Ionospheric models Ionospheric storms Lead time Low altitude Mathematical models Meteorological data Natural history Numerical forecasting Radio signals Simulation Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate Space weather Spacecraft Stratospheric warming Total Electron Content Upper atmosphere Weather forecasting |
title | Numerical forecast of the upper atmosphere and ionosphere using GAIA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20forecast%20of%20the%20upper%20atmosphere%20and%20ionosphere%20using%20GAIA&rft.jtitle=Earth,%20planets,%20and%20space&rft.au=Tao,%20Chihiro&rft.date=2020-11-24&rft.volume=72&rft.issue=1&rft.artnum=178&rft.issn=1880-5981&rft.eissn=1880-5981&rft_id=info:doi/10.1186/s40623-020-01307-x&rft_dat=%3Cgale_proqu%3EA656001169%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473254269&rft_id=info:pmid/&rft_galeid=A656001169&rfr_iscdi=true |