Loading…

Numerical forecast of the upper atmosphere and ionosphere using GAIA

Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper su...

Full description

Saved in:
Bibliographic Details
Published in:Earth, planets, and space planets, and space, 2020-11, Vol.72 (1), Article 178
Main Authors: Tao, Chihiro, Jin, Hidekatsu, Miyoshi, Yasunobu, Shinagawa, Hiroyuki, Fujiwara, Hitoshi, Nishioka, Michi, Ishii, Mamoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3
cites cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3
container_end_page
container_issue 1
container_start_page
container_title Earth, planets, and space
container_volume 72
creator Tao, Chihiro
Jin, Hidekatsu
Miyoshi, Yasunobu
Shinagawa, Hiroyuki
Fujiwara, Hitoshi
Nishioka, Michi
Ishii, Mamoru
description Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.
doi_str_mv 10.1186/s40623-020-01307-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473254269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656001169</galeid><sourcerecordid>A656001169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4soOKf_gKeAJw-dL02TtscxdQ6Ggj_OIc1euo61qUkL87-3roruIjm85PH5vBf4BsElhQmlqbjxMYiIhRBBCJRBEu6OghFNUwh5ltLjP_fT4Mz7DQCDWLBRcPvYVehKrbbEWIda-ZZYQ9o1kq5p0BHVVtY3a3RIVL0ipa1_np0v64LMp4vpeXBi1NbjxXcdB2_3d6-zh3D5NF_MpstQc560IVU8z5XBCAxqljAmMoNJnBqd0DSPs9TkidIcDIdICUE1oMhiijxBTOMsZ-PgapjbOPveoW_lxnau7lfKKE5YxONIZD01GahCbVGWtbGtU7o_K6xKbWs0Zd-fCi4AKN0L1wdCz7S4awvVeS8XL8-HbDSw2lnvHRrZuLJS7kNSkF9RyCEK2Uch91HIXS-xQfI9XBfofv_9j_UJX-iK3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473254269</pqid></control><display><type>article</type><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</creator><creatorcontrib>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</creatorcontrib><description>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</description><identifier>ISSN: 1880-5981</identifier><identifier>ISSN: 1343-8832</identifier><identifier>EISSN: 1880-5981</identifier><identifier>DOI: 10.1186/s40623-020-01307-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3. Space science ; Aeronomy ; Atmosphere ; Atmosphere, Upper ; Earth and Environmental Science ; Earth Sciences ; Forecasts and trends ; Geology ; Geophysics/Geodesy ; Ionosphere ; Ionospheric electron content ; Ionospheric models ; Ionospheric storms ; Lead time ; Low altitude ; Mathematical models ; Meteorological data ; Natural history ; Numerical forecasting ; Radio signals ; Simulation ; Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate ; Space weather ; Spacecraft ; Stratospheric warming ; Total Electron Content ; Upper atmosphere ; Weather forecasting</subject><ispartof>Earth, planets, and space, 2020-11, Vol.72 (1), Article 178</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</citedby><cites>FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</cites><orcidid>0000-0001-8817-0589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473254269/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473254269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tao, Chihiro</creatorcontrib><creatorcontrib>Jin, Hidekatsu</creatorcontrib><creatorcontrib>Miyoshi, Yasunobu</creatorcontrib><creatorcontrib>Shinagawa, Hiroyuki</creatorcontrib><creatorcontrib>Fujiwara, Hitoshi</creatorcontrib><creatorcontrib>Nishioka, Michi</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><title>Earth, planets, and space</title><addtitle>Earth Planets Space</addtitle><description>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</description><subject>3. Space science</subject><subject>Aeronomy</subject><subject>Atmosphere</subject><subject>Atmosphere, Upper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Forecasts and trends</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Ionosphere</subject><subject>Ionospheric electron content</subject><subject>Ionospheric models</subject><subject>Ionospheric storms</subject><subject>Lead time</subject><subject>Low altitude</subject><subject>Mathematical models</subject><subject>Meteorological data</subject><subject>Natural history</subject><subject>Numerical forecasting</subject><subject>Radio signals</subject><subject>Simulation</subject><subject>Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate</subject><subject>Space weather</subject><subject>Spacecraft</subject><subject>Stratospheric warming</subject><subject>Total Electron Content</subject><subject>Upper atmosphere</subject><subject>Weather forecasting</subject><issn>1880-5981</issn><issn>1343-8832</issn><issn>1880-5981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc9LwzAUx4soOKf_gKeAJw-dL02TtscxdQ6Ggj_OIc1euo61qUkL87-3roruIjm85PH5vBf4BsElhQmlqbjxMYiIhRBBCJRBEu6OghFNUwh5ltLjP_fT4Mz7DQCDWLBRcPvYVehKrbbEWIda-ZZYQ9o1kq5p0BHVVtY3a3RIVL0ipa1_np0v64LMp4vpeXBi1NbjxXcdB2_3d6-zh3D5NF_MpstQc560IVU8z5XBCAxqljAmMoNJnBqd0DSPs9TkidIcDIdICUE1oMhiijxBTOMsZ-PgapjbOPveoW_lxnau7lfKKE5YxONIZD01GahCbVGWtbGtU7o_K6xKbWs0Zd-fCi4AKN0L1wdCz7S4awvVeS8XL8-HbDSw2lnvHRrZuLJS7kNSkF9RyCEK2Uch91HIXS-xQfI9XBfofv_9j_UJX-iK3A</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Tao, Chihiro</creator><creator>Jin, Hidekatsu</creator><creator>Miyoshi, Yasunobu</creator><creator>Shinagawa, Hiroyuki</creator><creator>Fujiwara, Hitoshi</creator><creator>Nishioka, Michi</creator><creator>Ishii, Mamoru</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid></search><sort><creationdate>20201124</creationdate><title>Numerical forecast of the upper atmosphere and ionosphere using GAIA</title><author>Tao, Chihiro ; Jin, Hidekatsu ; Miyoshi, Yasunobu ; Shinagawa, Hiroyuki ; Fujiwara, Hitoshi ; Nishioka, Michi ; Ishii, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3. Space science</topic><topic>Aeronomy</topic><topic>Atmosphere</topic><topic>Atmosphere, Upper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Forecasts and trends</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Ionosphere</topic><topic>Ionospheric electron content</topic><topic>Ionospheric models</topic><topic>Ionospheric storms</topic><topic>Lead time</topic><topic>Low altitude</topic><topic>Mathematical models</topic><topic>Meteorological data</topic><topic>Natural history</topic><topic>Numerical forecasting</topic><topic>Radio signals</topic><topic>Simulation</topic><topic>Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate</topic><topic>Space weather</topic><topic>Spacecraft</topic><topic>Stratospheric warming</topic><topic>Total Electron Content</topic><topic>Upper atmosphere</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Chihiro</creatorcontrib><creatorcontrib>Jin, Hidekatsu</creatorcontrib><creatorcontrib>Miyoshi, Yasunobu</creatorcontrib><creatorcontrib>Shinagawa, Hiroyuki</creatorcontrib><creatorcontrib>Fujiwara, Hitoshi</creatorcontrib><creatorcontrib>Nishioka, Michi</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Earth, planets, and space</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Chihiro</au><au>Jin, Hidekatsu</au><au>Miyoshi, Yasunobu</au><au>Shinagawa, Hiroyuki</au><au>Fujiwara, Hitoshi</au><au>Nishioka, Michi</au><au>Ishii, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical forecast of the upper atmosphere and ionosphere using GAIA</atitle><jtitle>Earth, planets, and space</jtitle><stitle>Earth Planets Space</stitle><date>2020-11-24</date><risdate>2020</risdate><volume>72</volume><issue>1</issue><artnum>178</artnum><issn>1880-5981</issn><issn>1343-8832</issn><eissn>1880-5981</eissn><abstract>Upper atmospheric conditions are crucial for the safe operation of spacecraft orbiting near Earth and for communication and positioning systems using radio signals. To understand and predict the upper atmospheric conditions, which include complex variations affected by both low altitude and upper surrounding environments, we have developed a quasi-real-time and forecast simulations using a physical global model, the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). The GAIA simulation system provides a global distribution of ionospheric total electron content (TEC) with background atmospheric and electric distributions including a few-days prediction. The prediction accuracy for the detection of significant ionospheric storms decreases with increasing lead time, i.e., the duration of the model simulation which is not constrained by realistic input parameters. Similar characteristic variations associated with sudden stratospheric warmings (SSWs) are reproduced with the full or limited input of meteorological data at least the prior 3 days. This is a first step toward the usage of GAIA for space weather forecasting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s40623-020-01307-x</doi><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1880-5981
ispartof Earth, planets, and space, 2020-11, Vol.72 (1), Article 178
issn 1880-5981
1343-8832
1880-5981
language eng
recordid cdi_proquest_journals_2473254269
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects 3. Space science
Aeronomy
Atmosphere
Atmosphere, Upper
Earth and Environmental Science
Earth Sciences
Forecasts and trends
Geology
Geophysics/Geodesy
Ionosphere
Ionospheric electron content
Ionospheric models
Ionospheric storms
Lead time
Low altitude
Mathematical models
Meteorological data
Natural history
Numerical forecasting
Radio signals
Simulation
Solar-Terrestrial Environment Prediction: Toward the Synergy of Science and Forecasting Operation of Space Weather and Space Climate
Space weather
Spacecraft
Stratospheric warming
Total Electron Content
Upper atmosphere
Weather forecasting
title Numerical forecast of the upper atmosphere and ionosphere using GAIA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20forecast%20of%20the%20upper%20atmosphere%20and%20ionosphere%20using%20GAIA&rft.jtitle=Earth,%20planets,%20and%20space&rft.au=Tao,%20Chihiro&rft.date=2020-11-24&rft.volume=72&rft.issue=1&rft.artnum=178&rft.issn=1880-5981&rft.eissn=1880-5981&rft_id=info:doi/10.1186/s40623-020-01307-x&rft_dat=%3Cgale_proqu%3EA656001169%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-1a5bbafe20fec373369fe748fc718b498fb7ac50f502a661c0e6941e57ee849b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473254269&rft_id=info:pmid/&rft_galeid=A656001169&rfr_iscdi=true