Loading…

Ammonia recovery from air stripping process applied to landfill leachate treatment

The leachate is a type of effluent from landfills containing high concentrations of ammonia, even after normal treatment procedures are applied. Due to its characteristic, the leachate can adversely impact the environment and public health. Leachate treatment seeks to remove a series of compounds wi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2020-12, Vol.27 (36), p.45108-45120
Main Authors: dos Santos, Heloísa Alves Pereira, de Castilhos Júnior, Armando Borges, Nadaleti, Willian Cézar, Lourenço, Vitor Alves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The leachate is a type of effluent from landfills containing high concentrations of ammonia, even after normal treatment procedures are applied. Due to its characteristic, the leachate can adversely impact the environment and public health. Leachate treatment seeks to remove a series of compounds with adverse characteristics present in this type of effluent. Ammonia nitrogen is the main problem, easily observed in concentrations near 2000 mg/L. The effluents with high concentrations of ammonia nitrogen can stimulate the growth of algae, reduce the dissolved oxygen in rivers, and cause toxicity on the aquatic biota, even in low concentrations. Many research for treatment methods aiming to remove this compound, specifically, have been increasingly deeper, mainly by physical-chemical processes. This study aimed to test the process of air stripping in a closed system and pilot scale, applied on leachate treatment of landfills, to remove the high concentrations of ammonia nitrogen and its recovery by the chemical absorption of ammonia on phosphoric acid, resulting in a product with potential application as agricultural fertilizer, the ammonia phosphate. The leachate flows used were 9, 18, 20, and 40 L/h, and the air flows were 1800 and 3600 L/h. Calcium carbonate (standard grade), commercial hydrated lime (CHL), and sodium hydroxide (standard grade) were used for pH adjustments. To the ammonia recovery, three flasks were used with 2.5 L of a phosphoric acid solution of 0.12 and 0.24 mol/L. The air stripping tower removed an average of 98% of ammoniacal nitrogen, with an operating time of 4 to 9 days. The volume of air consumed to remove 1 g of ammoniacal nitrogen varied from 9, 91, and 21.6 m 3 . The ammonia recovery was about 92% using a phosphoric acid solution, producing the ammonia phosphate.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-10397-9