Loading…
Correlators in the Gaussian and chiral supereigenvalue models in the Neveu-Schwarz sector
A bstract We analyze the Gaussian and chiral supereigenvalue models in the Neveu-Schwarz sector. We show that their partition functions can be expressed as the infinite sums of the homogeneous operators acting on the elementary functions. In spite of the fact that the usual W -representations of the...
Saved in:
Published in: | The journal of high energy physics 2020-11, Vol.2020 (11), Article 119 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A
bstract
We analyze the Gaussian and chiral supereigenvalue models in the Neveu-Schwarz sector. We show that their partition functions can be expressed as the infinite sums of the homogeneous operators acting on the elementary functions. In spite of the fact that the usual
W
-representations of these matrix models can not be provided here, we can still derive the compact expressions of the correlators in these two supereigenvalue models. Furthermore, the non-Gaussian (chiral) cases are also discussed. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP11(2020)119 |