Loading…
Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models
This paper considers a situation in which cause–effect relationships among variables can be described by a linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). By considering a set of covariates that satisfies the back-door criterion, we formulate (1) the...
Saved in:
Published in: | Advances in statistical analysis : AStA : a journal of the German Statistical Society 2020-12, Vol.104 (4), p.667-685 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers a situation in which cause–effect relationships among variables can be described by a linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). By considering a set of covariates that satisfies the back-door criterion, we formulate (1) the variances of the estimated mean response and (2) the mean squared error (MSE) of the predicted response, with external intervention in which a treatment variable is set to be a certain constant value. The variance and MSE formulas proposed in this paper are exact, unlike those in most previous studies regarding the problem of estimating total effects. In addition, we compare the performance of the simple regression model with that of the predicted response with the external intervention. Furthermore, we apply the present results to statistical quality control. |
---|---|
ISSN: | 1863-8171 1863-818X |
DOI: | 10.1007/s10182-020-00372-7 |