Loading…
A Discussion on Variational Analysis in Derivative-Free Optimization
Variational Analysis studies mathematical objects under small variations. With regards to optimization, these objects are typified by representations of first-order or second-order information (gradients, subgradients, Hessians, etc). On the other hand, Derivative-Free Optimization studies algorithm...
Saved in:
Published in: | Set-valued and variational analysis 2020-12, Vol.28 (4), p.643-659 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Variational Analysis studies mathematical objects under small variations. With regards to optimization, these objects are typified by representations of first-order or second-order information (gradients, subgradients, Hessians, etc). On the other hand, Derivative-Free Optimization studies algorithms for continuous optimization that do not use first-order information. As such, researchers might conclude that Variational Analysis plays a limited role in Derivative-Free Optimization research. In this paper we argue the contrary by showing that many successful DFO algorithms rely heavily on tools and results from Variational Analysis. |
---|---|
ISSN: | 1877-0533 1877-0541 |
DOI: | 10.1007/s11228-020-00556-y |