Loading…
Homogeneous Integrable Legendrian Contact Structures in Dimension Five
We consider Legendrian contact structures on odd-dimensional complex analytic manifolds. We are particularly interested in integrable structures, which can be encoded by compatible complete systems of second order PDEs on a scalar function of many independent variables and considered up to point tra...
Saved in:
Published in: | The Journal of geometric analysis 2020-12, Vol.30 (4), p.3806-3858 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider Legendrian contact structures on odd-dimensional complex analytic manifolds. We are particularly interested in integrable structures, which can be encoded by compatible complete systems of second order PDEs on a scalar function of many independent variables and considered up to point transformations. Using the techniques of parabolic differential geometry, we compute the associated regular, normal Cartan connection and give explicit formulas for the harmonic part of the curvature. The PDE system is trivializable by means of point transformations if and only if the harmonic curvature vanishes identically. In dimension five, the harmonic curvature takes the form of a binary quartic field, so there is a Petrov classification based on its root type. We give a complete local classification of all five-dimensional integrable Legendrian contact structures whose symmetry algebra is transitive on the manifold and has at least one-dimensional isotropy algebra at any point. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00219-x |