Loading…

Screening of Urinary Renal Cancer Metabolic Biomarkers with Gold Nanoparticles-assisted Laser Desorption/Ionization Mass Spectrometry

Renal cell carcinoma is a very aggressive and often fatal disease for which there are no specific biomarkers found to date. The purpose of this work was to find features that differentiate urine metabolic profiles of healthy people and cancer patients. Laser desorption/ionization mass spectrometry o...

Full description

Saved in:
Bibliographic Details
Published in:Analytical Sciences 2020/12/10, Vol.36(12), pp.1521-1527
Main Authors: ARENDOWSKI, Adrian, OSSOLIŃSKI, Krzysztof, NIZIOL, Joanna, RUMAN, Tomasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Renal cell carcinoma is a very aggressive and often fatal disease for which there are no specific biomarkers found to date. The purpose of this work was to find features that differentiate urine metabolic profiles of healthy people and cancer patients. Laser desorption/ionization mass spectrometry on gold nanostructures-based techniques were used for the metabolic analysis of urine of 50 patients with kidney cancer. Comparison with data from 50 healthy volunteers led to the discovery of several compounds that may be considered potential renal cell carcinoma (RCC) biomarkers. Statistical analysis of data allowed for the discovery of m/z values that had the greatest impact on group differentiation. A database search enabled the assignment of signals for the most promising 15 features among them: serine, heptanol, 3-methylene-indolenine, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, phosphodimethylethanolamine, 4-methoxyphenylacetic acid, N-acetylglutamine, 3,5-dihydroxyphenylvaleric acid, hydroxyhexanoylglycine, valyl-leucine, leucyl-histidine, oleamide, 9,12,13-trihydroxyoctadecenoic acid, stearidonyl carnitine and squalene. Differences of metabolite profiles of human urine could be identified by gold nanoparticle-enhanced target (AuNPET) LDI MS method and used for the detection of renal cancer.
ISSN:0910-6340
1348-2246
DOI:10.2116/analsci.20P226