Loading…
4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics
Optical quantum information processing will require highly efficient photonic circuits to connect quantum nodes on-chip and across long distances. This entails the efficient integration of optically addressable qubits into photonic circuits, as well as quantum frequency conversion to the telecommuni...
Saved in:
Published in: | Nature photonics 2020-05, Vol.14 (5), p.330-334 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical quantum information processing will require highly efficient photonic circuits to connect quantum nodes on-chip and across long distances. This entails the efficient integration of optically addressable qubits into photonic circuits, as well as quantum frequency conversion to the telecommunications band. 4H-silicon carbide (4H-SiC) offers unique potential for on-chip quantum photonics, as it hosts a variety of promising colour centres and has a strong second-order optical nonlinearity. Here, we demonstrate within a single, monolithic platform the strong enhancement of emission from a colour centre and efficient optical frequency conversion. We develop a fabrication process for thin films of 4H-SiC, which are compatible with industry-standard, CMOS nanofabrication. This work provides a viable route towards industry-compatible, scalable colour-centre-based quantum technologies, including the monolithic generation and frequency conversion of quantum light on-chip.
Monolithic photonics devices based on SiC are fabricated by a wafer bonding and thinning technique. The strong enhancement of single-photon emission from a colour centre and optical frequency conversion with an efficiency of 360% W
−1
are demonstrated. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-019-0556-6 |