Loading…
Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods
Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded. Methods: To complement the...
Saved in:
Published in: | Quantitative biology 2020-12, Vol.8 (4), p.312-324 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded.
Methods: To complement the experimental identification of human-HSV-1 PPIs, an integrative strategy to predict proteome-wide PPIs between human and HSV-1 was developed. For each human-HSV-1 protein pair, four popular PPI inference methods, including interolog mapping, the domain-domain interaction-based method, the domain-motif interaction-based method, and the machine learning-based method, were optimally implemented to generate four interaction probability scores, which were further integrated into a final probability score.
Results: As a result, a comprehensive high-confidence PPI network between human and HSV-1 was established, covering 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1 infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological significance of the brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1 proteins and Alzheimer’s-disease-related proteins were intensively investigated.
Conclusion: The current work can provide testable hypotheses to assist in the mechanistic understanding of the human-HSV-1 relationship and the anti-HSV-1 pharmaceutical target discovery. To make the predicted PPI network and the datasets freely accessible to the scientific community, a user-friendly database browser was released at http://www.zzdlab.com/HintHSV/index.php. |
---|---|
ISSN: | 2095-4689 2095-4697 |
DOI: | 10.1007/s40484-020-0222-5 |