Loading…

On testing marginal versus conditional independence

Summary We consider testing marginal independence versus conditional independence in a trivariate Gaussian setting. The two models are nonnested, and their intersection is a union of two marginal independences. We consider two sequences of such models, one from each type of independence, that are cl...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2020-12, Vol.107 (4), p.771-790
Main Authors: Guo, F Richard, Richardson, Thomas S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary We consider testing marginal independence versus conditional independence in a trivariate Gaussian setting. The two models are nonnested, and their intersection is a union of two marginal independences. We consider two sequences of such models, one from each type of independence, that are closest to each other in the Kullback–Leibler sense as they approach the intersection. They become indistinguishable if the signal strength, as measured by the product of two correlation parameters, decreases faster than the standard parametric rate. Under local alternatives at such a rate, we show that the asymptotic distribution of the likelihood ratio depends on where and how the local alternatives approach the intersection. To deal with this nonuniformity, we study a class of envelope distributions by taking pointwise suprema over asymptotic cumulative distribution functions. We show that these envelope distributions are well behaved and lead to model selection procedures with rate-free uniform error guarantees and near-optimal power. To control the error even when the two models are indistinguishable, rather than insist on a dichotomous choice, the proposed procedure will choose either or both models.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asaa040