Loading…

Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world

Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically infor...

Full description

Saved in:
Bibliographic Details
Published in:Biological invasions 2021, Vol.23 (1), p.297-349
Main Authors: Srivastava, Vivek, Roe, Amanda D., Keena, Melody A., Hamelin, Richard C., Griess, Verena C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53
cites cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53
container_end_page 349
container_issue 1
container_start_page 297
container_title Biological invasions
container_volume 23
creator Srivastava, Vivek
Roe, Amanda D.
Keena, Melody A.
Hamelin, Richard C.
Griess, Verena C.
description Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.
doi_str_mv 10.1007/s10530-020-02372-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476734873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</originalsourceid><addsrcrecordid>eNp9UEtOwzAQtRBIlMIFWFliHfAnjm12qOInVeoG1pbjOK2rNA52UtQd1-B6nASHILFjMT_PezPjB8AlRtcYIX4TMWIUZYiMRjnJ5BGYYcZphvMiP045FTyjLOen4CzGLUJIcsRmoF9tYL-xsGu0sXFMD18fn00D1_4Wul0X_N61axg7a1zqVy72wZVD73wLd76yTTO2ax-ga_c6ur0dCxt72CUX0yvULRxaY0OvU_HuQ1Odg5NaN9Fe_MY5eH24f1k8ZcvV4_PibpkZimWfWaYZFrwsCZZE6IIUSMuCCCy1LU1tSiEY1wUrLTOlERILS3OEGclRLVHF6BxcTXPTN96GdI_a-iG0aaUiOS84zQWnCUUmlAk-xmBr1QW30-GgMFKjumpSVyV11Y-6SiYSnUgxgdu1DX-j_2F9A44pf1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476734873</pqid></control><display><type>article</type><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><source>Springer Link</source><creator>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</creator><creatorcontrib>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</creatorcontrib><description>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</description><identifier>ISSN: 1387-3547</identifier><identifier>EISSN: 1573-1464</identifier><identifier>DOI: 10.1007/s10530-020-02372-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biomedical and Life Sciences ; Complexity ; Developmental Biology ; Dispersal ; Dispersion ; Ecology ; Entropy ; Freshwater &amp; Marine Ecology ; Geographical distribution ; Introduced species ; Invasive species ; Life Sciences ; Maximum entropy ; Modelling ; Nonnative species ; Original Paper ; Pests ; Plant Sciences</subject><ispartof>Biological invasions, 2021, Vol.23 (1), p.297-349</ispartof><rights>Crown. This article is co- authored by employees of the U.S. government. Contributions by US government employees are not under copyright protection in the U.S.; foreign copyright protection may apply. 2020</rights><rights>Crown. This article is co- authored by employees of the U.S. government. Contributions by US government employees are not under copyright protection in the U.S.; foreign copyright protection may apply. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</citedby><cites>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</cites><orcidid>0000-0001-7299-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Srivastava, Vivek</creatorcontrib><creatorcontrib>Roe, Amanda D.</creatorcontrib><creatorcontrib>Keena, Melody A.</creatorcontrib><creatorcontrib>Hamelin, Richard C.</creatorcontrib><creatorcontrib>Griess, Verena C.</creatorcontrib><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><title>Biological invasions</title><addtitle>Biol Invasions</addtitle><description>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</description><subject>Biomedical and Life Sciences</subject><subject>Complexity</subject><subject>Developmental Biology</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Ecology</subject><subject>Entropy</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Geographical distribution</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>Maximum entropy</subject><subject>Modelling</subject><subject>Nonnative species</subject><subject>Original Paper</subject><subject>Pests</subject><subject>Plant Sciences</subject><issn>1387-3547</issn><issn>1573-1464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAQtRBIlMIFWFliHfAnjm12qOInVeoG1pbjOK2rNA52UtQd1-B6nASHILFjMT_PezPjB8AlRtcYIX4TMWIUZYiMRjnJ5BGYYcZphvMiP045FTyjLOen4CzGLUJIcsRmoF9tYL-xsGu0sXFMD18fn00D1_4Wul0X_N61axg7a1zqVy72wZVD73wLd76yTTO2ax-ga_c6ur0dCxt72CUX0yvULRxaY0OvU_HuQ1Odg5NaN9Fe_MY5eH24f1k8ZcvV4_PibpkZimWfWaYZFrwsCZZE6IIUSMuCCCy1LU1tSiEY1wUrLTOlERILS3OEGclRLVHF6BxcTXPTN96GdI_a-iG0aaUiOS84zQWnCUUmlAk-xmBr1QW30-GgMFKjumpSVyV11Y-6SiYSnUgxgdu1DX-j_2F9A44pf1s</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Srivastava, Vivek</creator><creator>Roe, Amanda D.</creator><creator>Keena, Melody A.</creator><creator>Hamelin, Richard C.</creator><creator>Griess, Verena C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>88A</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7299-6693</orcidid></search><sort><creationdate>2021</creationdate><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><author>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Complexity</topic><topic>Developmental Biology</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Ecology</topic><topic>Entropy</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Geographical distribution</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>Maximum entropy</topic><topic>Modelling</topic><topic>Nonnative species</topic><topic>Original Paper</topic><topic>Pests</topic><topic>Plant Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Vivek</creatorcontrib><creatorcontrib>Roe, Amanda D.</creatorcontrib><creatorcontrib>Keena, Melody A.</creatorcontrib><creatorcontrib>Hamelin, Richard C.</creatorcontrib><creatorcontrib>Griess, Verena C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Biological invasions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Vivek</au><au>Roe, Amanda D.</au><au>Keena, Melody A.</au><au>Hamelin, Richard C.</au><au>Griess, Verena C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</atitle><jtitle>Biological invasions</jtitle><stitle>Biol Invasions</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>297</spage><epage>349</epage><pages>297-349</pages><issn>1387-3547</issn><eissn>1573-1464</eissn><abstract>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10530-020-02372-9</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-7299-6693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-3547
ispartof Biological invasions, 2021, Vol.23 (1), p.297-349
issn 1387-3547
1573-1464
language eng
recordid cdi_proquest_journals_2476734873
source Springer Link
subjects Biomedical and Life Sciences
Complexity
Developmental Biology
Dispersal
Dispersion
Ecology
Entropy
Freshwater & Marine Ecology
Geographical distribution
Introduced species
Invasive species
Life Sciences
Maximum entropy
Modelling
Nonnative species
Original Paper
Pests
Plant Sciences
title Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oh%20the%20places%20they%E2%80%99ll%20go:%20improving%20species%20distribution%20modelling%20for%20invasive%20forest%20pests%20in%20an%20uncertain%20world&rft.jtitle=Biological%20invasions&rft.au=Srivastava,%20Vivek&rft.date=2021&rft.volume=23&rft.issue=1&rft.spage=297&rft.epage=349&rft.pages=297-349&rft.issn=1387-3547&rft.eissn=1573-1464&rft_id=info:doi/10.1007/s10530-020-02372-9&rft_dat=%3Cproquest_cross%3E2476734873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476734873&rft_id=info:pmid/&rfr_iscdi=true