Loading…
Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world
Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically infor...
Saved in:
Published in: | Biological invasions 2021, Vol.23 (1), p.297-349 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53 |
container_end_page | 349 |
container_issue | 1 |
container_start_page | 297 |
container_title | Biological invasions |
container_volume | 23 |
creator | Srivastava, Vivek Roe, Amanda D. Keena, Melody A. Hamelin, Richard C. Griess, Verena C. |
description | Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design. |
doi_str_mv | 10.1007/s10530-020-02372-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476734873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</originalsourceid><addsrcrecordid>eNp9UEtOwzAQtRBIlMIFWFliHfAnjm12qOInVeoG1pbjOK2rNA52UtQd1-B6nASHILFjMT_PezPjB8AlRtcYIX4TMWIUZYiMRjnJ5BGYYcZphvMiP045FTyjLOen4CzGLUJIcsRmoF9tYL-xsGu0sXFMD18fn00D1_4Wul0X_N61axg7a1zqVy72wZVD73wLd76yTTO2ax-ga_c6ur0dCxt72CUX0yvULRxaY0OvU_HuQ1Odg5NaN9Fe_MY5eH24f1k8ZcvV4_PibpkZimWfWaYZFrwsCZZE6IIUSMuCCCy1LU1tSiEY1wUrLTOlERILS3OEGclRLVHF6BxcTXPTN96GdI_a-iG0aaUiOS84zQWnCUUmlAk-xmBr1QW30-GgMFKjumpSVyV11Y-6SiYSnUgxgdu1DX-j_2F9A44pf1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476734873</pqid></control><display><type>article</type><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><source>Springer Link</source><creator>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</creator><creatorcontrib>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</creatorcontrib><description>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</description><identifier>ISSN: 1387-3547</identifier><identifier>EISSN: 1573-1464</identifier><identifier>DOI: 10.1007/s10530-020-02372-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biomedical and Life Sciences ; Complexity ; Developmental Biology ; Dispersal ; Dispersion ; Ecology ; Entropy ; Freshwater & Marine Ecology ; Geographical distribution ; Introduced species ; Invasive species ; Life Sciences ; Maximum entropy ; Modelling ; Nonnative species ; Original Paper ; Pests ; Plant Sciences</subject><ispartof>Biological invasions, 2021, Vol.23 (1), p.297-349</ispartof><rights>Crown. This article is co- authored by employees of the U.S. government. Contributions by US government employees are not under copyright protection in the U.S.; foreign copyright protection may apply. 2020</rights><rights>Crown. This article is co- authored by employees of the U.S. government. Contributions by US government employees are not under copyright protection in the U.S.; foreign copyright protection may apply. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</citedby><cites>FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</cites><orcidid>0000-0001-7299-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Srivastava, Vivek</creatorcontrib><creatorcontrib>Roe, Amanda D.</creatorcontrib><creatorcontrib>Keena, Melody A.</creatorcontrib><creatorcontrib>Hamelin, Richard C.</creatorcontrib><creatorcontrib>Griess, Verena C.</creatorcontrib><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><title>Biological invasions</title><addtitle>Biol Invasions</addtitle><description>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</description><subject>Biomedical and Life Sciences</subject><subject>Complexity</subject><subject>Developmental Biology</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Ecology</subject><subject>Entropy</subject><subject>Freshwater & Marine Ecology</subject><subject>Geographical distribution</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>Maximum entropy</subject><subject>Modelling</subject><subject>Nonnative species</subject><subject>Original Paper</subject><subject>Pests</subject><subject>Plant Sciences</subject><issn>1387-3547</issn><issn>1573-1464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAQtRBIlMIFWFliHfAnjm12qOInVeoG1pbjOK2rNA52UtQd1-B6nASHILFjMT_PezPjB8AlRtcYIX4TMWIUZYiMRjnJ5BGYYcZphvMiP045FTyjLOen4CzGLUJIcsRmoF9tYL-xsGu0sXFMD18fn00D1_4Wul0X_N61axg7a1zqVy72wZVD73wLd76yTTO2ax-ga_c6ur0dCxt72CUX0yvULRxaY0OvU_HuQ1Odg5NaN9Fe_MY5eH24f1k8ZcvV4_PibpkZimWfWaYZFrwsCZZE6IIUSMuCCCy1LU1tSiEY1wUrLTOlERILS3OEGclRLVHF6BxcTXPTN96GdI_a-iG0aaUiOS84zQWnCUUmlAk-xmBr1QW30-GgMFKjumpSVyV11Y-6SiYSnUgxgdu1DX-j_2F9A44pf1s</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Srivastava, Vivek</creator><creator>Roe, Amanda D.</creator><creator>Keena, Melody A.</creator><creator>Hamelin, Richard C.</creator><creator>Griess, Verena C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>88A</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7299-6693</orcidid></search><sort><creationdate>2021</creationdate><title>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</title><author>Srivastava, Vivek ; Roe, Amanda D. ; Keena, Melody A. ; Hamelin, Richard C. ; Griess, Verena C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Complexity</topic><topic>Developmental Biology</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Ecology</topic><topic>Entropy</topic><topic>Freshwater & Marine Ecology</topic><topic>Geographical distribution</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>Maximum entropy</topic><topic>Modelling</topic><topic>Nonnative species</topic><topic>Original Paper</topic><topic>Pests</topic><topic>Plant Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Vivek</creatorcontrib><creatorcontrib>Roe, Amanda D.</creatorcontrib><creatorcontrib>Keena, Melody A.</creatorcontrib><creatorcontrib>Hamelin, Richard C.</creatorcontrib><creatorcontrib>Griess, Verena C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Biological invasions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Vivek</au><au>Roe, Amanda D.</au><au>Keena, Melody A.</au><au>Hamelin, Richard C.</au><au>Griess, Verena C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world</atitle><jtitle>Biological invasions</jtitle><stitle>Biol Invasions</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>297</spage><epage>349</epage><pages>297-349</pages><issn>1387-3547</issn><eissn>1573-1464</eissn><abstract>Species distribution modelling (SDM) is a valuable tool for predicting the potential distribution of invasive species across space and time. Maximum entropy modelling (MaxEnt) is a popular choice for SDM, but questions have been raised about how these models are developed. Without biologically informed baseline assumptions, complex default SDM models could be selected, even though alternative settings may be more appropriate. Here we explored the effects of various SDM design strategies on distribution mapping of four forest invasive species (FIS) in Canada. We found that if we ignored the underlying FIS biology such as use of biologically relevant predictors, appropriate feature selection and inclusion of dispersal and biotic interactions when we developed our SDMs, we obtained complex SDMs (default) that provided an incomplete picture of the potential FIS invasion. We recommend simplifying SDM complexity and including biologically informed assumptions to achieve more accurate dispersal predictions, particularly when projecting FIS spread across time. We strongly encourage SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to determine the best SDM design.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10530-020-02372-9</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-7299-6693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-3547 |
ispartof | Biological invasions, 2021, Vol.23 (1), p.297-349 |
issn | 1387-3547 1573-1464 |
language | eng |
recordid | cdi_proquest_journals_2476734873 |
source | Springer Link |
subjects | Biomedical and Life Sciences Complexity Developmental Biology Dispersal Dispersion Ecology Entropy Freshwater & Marine Ecology Geographical distribution Introduced species Invasive species Life Sciences Maximum entropy Modelling Nonnative species Original Paper Pests Plant Sciences |
title | Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oh%20the%20places%20they%E2%80%99ll%20go:%20improving%20species%20distribution%20modelling%20for%20invasive%20forest%20pests%20in%20an%20uncertain%20world&rft.jtitle=Biological%20invasions&rft.au=Srivastava,%20Vivek&rft.date=2021&rft.volume=23&rft.issue=1&rft.spage=297&rft.epage=349&rft.pages=297-349&rft.issn=1387-3547&rft.eissn=1573-1464&rft_id=info:doi/10.1007/s10530-020-02372-9&rft_dat=%3Cproquest_cross%3E2476734873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e5a5187bb21928a6260a962819aebcfcb8857a65be5cbc8918e34015240f90d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476734873&rft_id=info:pmid/&rfr_iscdi=true |