Loading…
Thermal and flow investigation of MHD natural convection in a nanofluid-saturated porous enclosure: an asymptotic analysis
In the present investigation, asymptotic solutions are obtained regarding the laminar natural convection of a nanofluid in a porous enclosure subject to internal heating and magnetic field, which appears in a plethora of industrial and bioengineering applications. The complicated nature of the nanof...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2021, Vol.143 (1), p.751-765 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present investigation, asymptotic solutions are obtained regarding the laminar natural convection of a nanofluid in a porous enclosure subject to internal heating and magnetic field, which appears in a plethora of industrial and bioengineering applications. The complicated nature of the nanofluids along with the computational time needed for the magnetohydrodynamic numerical simulations makes this problem too difficult to face with. Hence, the innovation of this study relies on providing a first-principles approach that includes three kinds of widely utilized nanoparticles (Cu, Al
2
O
3
and TiO
2
) dispersed in aqueous suspension by incorporating a unified way for describing the nanofluid thermal conductivity and viscosity. In addition, the effect of the magnetic field, internal heating, porous medium permeability as well as nanoparticle size and volume fraction is examined via the derived analytical relationships. In brief, the current study suggests that the increase in the magnetic field intensity and the decrease in the medium permeability tend to suppress the nanofluid flow, thus resulting in deterioration of the heat transfer. This deterioration also occurs when the nanofluid becomes denser and the nanoparticles enlarge. Conversely, increasing the internal heating reinforces the convective currents in favor of cooling process. Finally, the present asymptotic solutions are expected to be very useful in various scientific fields given the rapidly growing interest in nanofluids. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-019-09165-w |