Loading…

Thermodynamic potential of a high-concentration hybrid photovoltaic/thermal plant for co-production of steam and electricity

A thermodynamic model was developed to assess the energetic performance of a dual receiver concentrated photovoltaic/thermal plant for the co-production of steam, electricity and hot water/air. The system utilizes a dual receiver including a steam generator based on a solar receiver and a concentrat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2021, Vol.143 (2), p.1389-1398
Main Authors: Sarafraz, M. M., Goodarzi, Marjan, Tlili, Iskander, Alkanhal, Tawfeeq Abdullah, Arjomandi, Maziar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A thermodynamic model was developed to assess the energetic performance of a dual receiver concentrated photovoltaic/thermal plant for the co-production of steam, electricity and hot water/air. The system utilizes a dual receiver including a steam generator based on a solar receiver and a concentrated PV/thermal receiver. The system is regulated so that a fraction ( φ ) of the thermal energy absorbed by the solar field is partitioned for the steam generator, while the rest is dedicated to the CPV/T unit. The results showed that the thermal performance of the system strongly depends on the φ value such that the system can simultaneously produce electricity and steam, while warm air and water can also be produced by cooling the CPV/T unit. Also, the thermal performance of the coolant is a key element to the system, which highlights the potential of nano-suspensions as a coolant in the system. Likewise, the assessment of the process plant was performed at field area of 2500–10,000 m 2 , the solar concentration ratio of 50–200 and the CPV/T coolant’s outlet temperature of 323–353 K. It was found that the highest values of thermal losses can be ~ 2% of the total thermal input of the plant. Also, a trade-off trend was identified between the φ value, steam and electricity production. It was also found that at a solar concentration ratio of 2000, the system is competitive to produce steam to be fed into a multi-flash desalination system. The energetic performance of the system revealed that at φ  = 0.75, about 48% of the energy is partitioned for the hot water and hot air production for the agricultural application, while 24% is used for the electricity and 26% is used for the steam production.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-020-09914-2