Loading…
A sharp gradient estimate and \(W^{2,q}\) regularity for the prescribed mean curvature equation in the Lorentz-Minkowski space
We consider the prescribed mean curvature equation for entire spacelike hypersurfaces in the Lorentz-Minkowski space, namely \begin{equation*} -\operatorname{div}\left(\displaystyle\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \rho \quad \hbox{in }\mathbb{R}^N, \end{equation*} where \(N\geq 3\). We...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the prescribed mean curvature equation for entire spacelike hypersurfaces in the Lorentz-Minkowski space, namely \begin{equation*} -\operatorname{div}\left(\displaystyle\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \rho \quad \hbox{in }\mathbb{R}^N, \end{equation*} where \(N\geq 3\). We first prove a new gradient estimate for classical solutions with smooth data \(\rho\). As a consequence we obtain that the unique weak solution of the equation satisfying a homogeneous boundary condition at infinity is locally of class \(W^{2,q}\) and strictly spacelike in \(\mathbb{R}^N\), provided that \(\rho\in L^q(\mathbb{R}^N) \cap L^m(\mathbb{R}^N)\) with \(q>N\) and \(m\in[1,\frac{2N}{N+2}]\). |
---|---|
ISSN: | 2331-8422 |