Loading…

Breast cancer histopathology image classification using kernelized weighted extreme learning machine

Histopathology is considered as the gold standard for diagnosing breast cancer. Traditional machine learning (ML) algorithm provides a promising performance for cancer diagnosis if the training dataset is balanced. Nevertheless, if the training dataset is imbalanced the performance of the ML model i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology 2021-03, Vol.31 (1), p.168-179
Main Authors: Saxena, Shweta, Shukla, Sanyam, Gyanchandani, Manasi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histopathology is considered as the gold standard for diagnosing breast cancer. Traditional machine learning (ML) algorithm provides a promising performance for cancer diagnosis if the training dataset is balanced. Nevertheless, if the training dataset is imbalanced the performance of the ML model is skewed toward the majority class. It may pose a problem for the pathologist because if the benign sample is misclassified as malignant, then a pathologist could make a misjudgment about the diagnosis. A limited investigation has been done in literature for solving the class imbalance problem in computer‐aided diagnosis (CAD) of breast cancer using histopathology. This work proposes a hybrid ML model to solve the class imbalance problem. The proposed model employs pretrained ResNet50 and the kernelized weighted extreme learning machine for CAD of breast cancer using histopathology. The breast cancer histopathological images are obtained from publicly available BreakHis and BisQue datasets. The proposed method achieved a reasonable performance for the classification of the minority as well as the majority class instances. In comparison, the proposed approach outperforms the state‐of‐the‐art ML models implemented in previous studies using the same training‐testing folds of the publicly accessible BreakHis dataset.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.22465