Loading…

A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming

This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021-01, Vol.2021, p.1-15
Main Authors: Pei, Pei, Wang, Jiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083
cites cdi_FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083
container_end_page 15
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Pei, Pei
Wang, Jiang
description This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm. Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.
doi_str_mv 10.1155/2021/6618351
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487056181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487056181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhosoOKd3PkDAS63LSZqmvZxD52A4wQnelbM23TLWtCaZ1bc3Y157dX44H_85fFF0DfQeQIgRowxGaQoZF3ASDUCkPBaQyNOQKUtiYPzjPLpwbksDKSAbRJsxeVE9WXReN7gj072u0JSKzLEnvfYbMms6LD1Z6kYRNBUZm_VOkUlrnLeojXfkAZ2qSGvIm_rcK-N16An7L_VNXm27ttg02qwvo7Mad05d_c1h9P70uJw8x_PFdDYZz-OSc-ljITBPFStFldSC8YquuJTIEsQcUlnJjMlaQZ5gUgrgQgmugOZlRldIOaMZH0Y3x97OtuEd54ttu7cmnCxYkkkqgh4I1N2RKm3rnFV10dkgwP4UQIuDy-LgsvhzGfDbI77RpsJe_0__AkyOceo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487056181</pqid></control><display><type>article</type><title>A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Pei, Pei ; Wang, Jiang</creator><contributor>Chen, Xiao ; Xiao Chen</contributor><creatorcontrib>Pei, Pei ; Wang, Jiang ; Chen, Xiao ; Xiao Chen</creatorcontrib><description>This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm. Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6618351</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Computational geometry ; Control theory ; Convexity ; Guidance (motion) ; Impact angle ; Independent variables ; Kinematics ; Linear equations ; Look angles (tracking) ; Mathematical programming ; Nonlinear analysis ; Nonlinear programming ; Optimization ; Proportional navigation</subject><ispartof>Mathematical problems in engineering, 2021-01, Vol.2021, p.1-15</ispartof><rights>Copyright © 2021 Pei Pei and Jiang Wang.</rights><rights>Copyright © 2021 Pei Pei and Jiang Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083</citedby><cites>FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083</cites><orcidid>0000-0002-4099-9571 ; 0000-0002-2754-6471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2487056181/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2487056181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Chen, Xiao</contributor><contributor>Xiao Chen</contributor><creatorcontrib>Pei, Pei</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><title>A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming</title><title>Mathematical problems in engineering</title><description>This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm. Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Control theory</subject><subject>Convexity</subject><subject>Guidance (motion)</subject><subject>Impact angle</subject><subject>Independent variables</subject><subject>Kinematics</subject><subject>Linear equations</subject><subject>Look angles (tracking)</subject><subject>Mathematical programming</subject><subject>Nonlinear analysis</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Proportional navigation</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kNFKwzAUhosoOKd3PkDAS63LSZqmvZxD52A4wQnelbM23TLWtCaZ1bc3Y157dX44H_85fFF0DfQeQIgRowxGaQoZF3ASDUCkPBaQyNOQKUtiYPzjPLpwbksDKSAbRJsxeVE9WXReN7gj072u0JSKzLEnvfYbMms6LD1Z6kYRNBUZm_VOkUlrnLeojXfkAZ2qSGvIm_rcK-N16An7L_VNXm27ttg02qwvo7Mad05d_c1h9P70uJw8x_PFdDYZz-OSc-ljITBPFStFldSC8YquuJTIEsQcUlnJjMlaQZ5gUgrgQgmugOZlRldIOaMZH0Y3x97OtuEd54ttu7cmnCxYkkkqgh4I1N2RKm3rnFV10dkgwP4UQIuDy-LgsvhzGfDbI77RpsJe_0__AkyOceo</recordid><startdate>20210130</startdate><enddate>20210130</enddate><creator>Pei, Pei</creator><creator>Wang, Jiang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4099-9571</orcidid><orcidid>https://orcid.org/0000-0002-2754-6471</orcidid></search><sort><creationdate>20210130</creationdate><title>A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming</title><author>Pei, Pei ; Wang, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Control theory</topic><topic>Convexity</topic><topic>Guidance (motion)</topic><topic>Impact angle</topic><topic>Independent variables</topic><topic>Kinematics</topic><topic>Linear equations</topic><topic>Look angles (tracking)</topic><topic>Mathematical programming</topic><topic>Nonlinear analysis</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Proportional navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Pei</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Pei</au><au>Wang, Jiang</au><au>Chen, Xiao</au><au>Xiao Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-01-30</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming. The guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm. Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6618351</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4099-9571</orcidid><orcidid>https://orcid.org/0000-0002-2754-6471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-01, Vol.2021, p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2487056181
source Publicly Available Content Database; Wiley Open Access
subjects Algorithms
Computational geometry
Control theory
Convexity
Guidance (motion)
Impact angle
Independent variables
Kinematics
Linear equations
Look angles (tracking)
Mathematical programming
Nonlinear analysis
Nonlinear programming
Optimization
Proportional navigation
title A New Optimal Guidance Law with Impact Time and Angle Constraints Based on Sequential Convex Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Optimal%20Guidance%20Law%20with%20Impact%20Time%20and%20Angle%20Constraints%20Based%20on%20Sequential%20Convex%20Programming&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Pei,%20Pei&rft.date=2021-01-30&rft.volume=2021&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6618351&rft_dat=%3Cproquest_cross%3E2487056181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-55a96e2c5d4f523d0b377a24aa9167d7827fe194a4c5135e53e109c80ba032083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487056181&rft_id=info:pmid/&rfr_iscdi=true