Loading…
On an Inflated Unit-Lindley Distribution
Modeling fractional data in various real life scenarios is a challenging task. This paper consider situations where fractional data is observed on the interval [0,1]. The unit-Lindley distribution has been discussed in the literature where its support lies between 0 and 1. In this paper, we focus on...
Saved in:
Published in: | arXiv.org 2021-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling fractional data in various real life scenarios is a challenging task. This paper consider situations where fractional data is observed on the interval [0,1]. The unit-Lindley distribution has been discussed in the literature where its support lies between 0 and 1. In this paper, we focus on an inflated variant of the unit-Lindley distribution, where the inflation occurs at both 0 and 1. Various properties of the inflated unit-Lindley distribution are discussed and examined, including point estimation based on the maximum likelihood method and interval estimation. Finally, extensive Monte Carlo simulation and real-data analyses are carried out to compare the fit of our proposed distribution along with some of the existing ones such as the inflated beta and the inflated Kumaraswamy distributions. |
---|---|
ISSN: | 2331-8422 |