Loading…

Interface enhanced functionalities in oxide superlattices under mechanical and electric boundary conditions

In recent years, the inverse design of artificial materials, in the format of thin-films and superlattices, has been an active sub-field in material science. From a joint effort from both experiment and theory, scientists are searching for new engineering methods or design rules so that the material...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2020-05, Vol.6 (1), Article 52
Main Authors: Wang, Hongwei, Tang, Fujie, Dhuvad, Pratikkumar H., Wu, Xifan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the inverse design of artificial materials, in the format of thin-films and superlattices, has been an active sub-field in material science. From a joint effort from both experiment and theory, scientists are searching for new engineering methods or design rules so that the materials can be custom designed with desired functionalities in theory before the materials are actually synthesized by epitaxial growth technique in laboratory. In this article, we provide a short summary of the recently proposed epitaxial strain and interface design approaches for the functional artificial oxide heterostructures. The underlying physical mechanism enabling the enhanced functional properties, such as ferroelectricity and multiferroics, are briefly reviewed. In particular, focused discussions are made on the proper treatments of both mechanical and electric boundary conditions when the oxide thin-films and superlattices are theoretically modeled by first-principles computer simulations.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-020-0326-5