Loading…
Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica
Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers...
Saved in:
Published in: | Processes 2021-02, Vol.9 (2), p.313 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3 |
container_end_page | |
container_issue | 2 |
container_start_page | 313 |
container_title | Processes |
container_volume | 9 |
creator | Zhang, Yong-Qi Yu, Ping-Lan Sun, Wei-Feng Wang, Xuan |
description | Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance. |
doi_str_mv | 10.3390/pr9020313 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488839907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488839907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</originalsourceid><addsrcrecordid>eNpNUMtKA0EQXETBEHPwDxY8eVidxz6PYUk0EFQ08br0THrIxMnOOjNB4n_4v26MiH3pLqjq6q4ouqTkhvOK3HauIoxwyk-iAWOsSKqCFqf_5vNo5P2G9FVRXmb5IPoab9Fo6yDgKp4YlMFpCSZZOMT4Gb32AdoQ12twIAO6HmvpY6vi5Wsya3XQP8raWe-TuW7fevBkzR7Dem-wxfgBWivttrNeB_Txhw7r-GXnFEhMprtWBm1bMPqz1x2oXpve_yI6U2A8jn77MFpOJ4v6Ppk_3s3q8TyRrGIhAUUyVUBBhGAkr7hAoFKxfJVRSEVeZiUDgSUIngopFRa5SpEDEzTjQskVH0ZXx72ds-879KHZ2J3r7_ENS8uy5FVFip51fWTJw5cOVdM5vQW3byhpDsE3f8Hzby44ekM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488839907</pqid></control><display><type>article</type><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</creator><creatorcontrib>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</creatorcontrib><description>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9020313</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical reactions ; Chemistry ; Coupling agents ; Cross-linked polyethylene ; Crosslinking ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Electrical resistance ; Electrical resistivity ; Ethanol ; Finite element method ; Fourier transforms ; Fractal geometry ; Grafting ; Infrared spectroscopy ; Insulation ; Interfaces ; Light ; Mathematical models ; Mechanical properties ; Morphology ; Nanocomposites ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Polyethylene ; Polymers ; Scanning electron microscopy ; Silanes ; Silicon dioxide ; Sulfur ; Trees ; Trimethylolpropane triacrylate</subject><ispartof>Processes, 2021-02, Vol.9 (2), p.313</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</citedby><cites>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2488839907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2488839907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Zhang, Yong-Qi</creatorcontrib><creatorcontrib>Yu, Ping-Lan</creatorcontrib><creatorcontrib>Sun, Wei-Feng</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><title>Processes</title><description>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</description><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coupling agents</subject><subject>Cross-linked polyethylene</subject><subject>Crosslinking</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electrical resistance</subject><subject>Electrical resistivity</subject><subject>Ethanol</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Fractal geometry</subject><subject>Grafting</subject><subject>Infrared spectroscopy</subject><subject>Insulation</subject><subject>Interfaces</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Silanes</subject><subject>Silicon dioxide</subject><subject>Sulfur</subject><subject>Trees</subject><subject>Trimethylolpropane triacrylate</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtKA0EQXETBEHPwDxY8eVidxz6PYUk0EFQ08br0THrIxMnOOjNB4n_4v26MiH3pLqjq6q4ouqTkhvOK3HauIoxwyk-iAWOsSKqCFqf_5vNo5P2G9FVRXmb5IPoab9Fo6yDgKp4YlMFpCSZZOMT4Gb32AdoQ12twIAO6HmvpY6vi5Wsya3XQP8raWe-TuW7fevBkzR7Dem-wxfgBWivttrNeB_Txhw7r-GXnFEhMprtWBm1bMPqz1x2oXpve_yI6U2A8jn77MFpOJ4v6Ppk_3s3q8TyRrGIhAUUyVUBBhGAkr7hAoFKxfJVRSEVeZiUDgSUIngopFRa5SpEDEzTjQskVH0ZXx72ds-879KHZ2J3r7_ENS8uy5FVFip51fWTJw5cOVdM5vQW3byhpDsE3f8Hzby44ekM</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Yong-Qi</creator><creator>Yu, Ping-Lan</creator><creator>Sun, Wei-Feng</creator><creator>Wang, Xuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><author>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coupling agents</topic><topic>Cross-linked polyethylene</topic><topic>Crosslinking</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electrical resistance</topic><topic>Electrical resistivity</topic><topic>Ethanol</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Fractal geometry</topic><topic>Grafting</topic><topic>Infrared spectroscopy</topic><topic>Insulation</topic><topic>Interfaces</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Silanes</topic><topic>Silicon dioxide</topic><topic>Sulfur</topic><topic>Trees</topic><topic>Trimethylolpropane triacrylate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong-Qi</creatorcontrib><creatorcontrib>Yu, Ping-Lan</creatorcontrib><creatorcontrib>Sun, Wei-Feng</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong-Qi</au><au>Yu, Ping-Lan</au><au>Sun, Wei-Feng</au><au>Wang, Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</atitle><jtitle>Processes</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>313</spage><pages>313-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9020313</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-02, Vol.9 (2), p.313 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2488839907 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Chemical reactions Chemistry Coupling agents Cross-linked polyethylene Crosslinking Dielectric breakdown Dielectric strength Electric fields Electrical resistance Electrical resistivity Ethanol Finite element method Fourier transforms Fractal geometry Grafting Infrared spectroscopy Insulation Interfaces Light Mathematical models Mechanical properties Morphology Nanocomposites Nanoparticles NMR Nuclear magnetic resonance Polyethylene Polymers Scanning electron microscopy Silanes Silicon dioxide Sulfur Trees Trimethylolpropane triacrylate |
title | Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ameliorated%20Electrical-Tree%20Resistant%20Characteristics%20of%20UV-Initiated%20Cross-Linked%20Polyethylene%20Nanocomposites%20with%20Surface-Functionalized%20Nanosilica&rft.jtitle=Processes&rft.au=Zhang,%20Yong-Qi&rft.date=2021-02-01&rft.volume=9&rft.issue=2&rft.spage=313&rft.pages=313-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9020313&rft_dat=%3Cproquest_cross%3E2488839907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488839907&rft_id=info:pmid/&rfr_iscdi=true |