Loading…

Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica

Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2021-02, Vol.9 (2), p.313
Main Authors: Zhang, Yong-Qi, Yu, Ping-Lan, Sun, Wei-Feng, Wang, Xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3
cites cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3
container_end_page
container_issue 2
container_start_page 313
container_title Processes
container_volume 9
creator Zhang, Yong-Qi
Yu, Ping-Lan
Sun, Wei-Feng
Wang, Xuan
description Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.
doi_str_mv 10.3390/pr9020313
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488839907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488839907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</originalsourceid><addsrcrecordid>eNpNUMtKA0EQXETBEHPwDxY8eVidxz6PYUk0EFQ08br0THrIxMnOOjNB4n_4v26MiH3pLqjq6q4ouqTkhvOK3HauIoxwyk-iAWOsSKqCFqf_5vNo5P2G9FVRXmb5IPoab9Fo6yDgKp4YlMFpCSZZOMT4Gb32AdoQ12twIAO6HmvpY6vi5Wsya3XQP8raWe-TuW7fevBkzR7Dem-wxfgBWivttrNeB_Txhw7r-GXnFEhMprtWBm1bMPqz1x2oXpve_yI6U2A8jn77MFpOJ4v6Ppk_3s3q8TyRrGIhAUUyVUBBhGAkr7hAoFKxfJVRSEVeZiUDgSUIngopFRa5SpEDEzTjQskVH0ZXx72ds-879KHZ2J3r7_ENS8uy5FVFip51fWTJw5cOVdM5vQW3byhpDsE3f8Hzby44ekM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488839907</pqid></control><display><type>article</type><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</creator><creatorcontrib>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</creatorcontrib><description>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9020313</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical reactions ; Chemistry ; Coupling agents ; Cross-linked polyethylene ; Crosslinking ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Electrical resistance ; Electrical resistivity ; Ethanol ; Finite element method ; Fourier transforms ; Fractal geometry ; Grafting ; Infrared spectroscopy ; Insulation ; Interfaces ; Light ; Mathematical models ; Mechanical properties ; Morphology ; Nanocomposites ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Polyethylene ; Polymers ; Scanning electron microscopy ; Silanes ; Silicon dioxide ; Sulfur ; Trees ; Trimethylolpropane triacrylate</subject><ispartof>Processes, 2021-02, Vol.9 (2), p.313</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</citedby><cites>FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2488839907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2488839907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Zhang, Yong-Qi</creatorcontrib><creatorcontrib>Yu, Ping-Lan</creatorcontrib><creatorcontrib>Sun, Wei-Feng</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><title>Processes</title><description>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</description><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coupling agents</subject><subject>Cross-linked polyethylene</subject><subject>Crosslinking</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electrical resistance</subject><subject>Electrical resistivity</subject><subject>Ethanol</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Fractal geometry</subject><subject>Grafting</subject><subject>Infrared spectroscopy</subject><subject>Insulation</subject><subject>Interfaces</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Silanes</subject><subject>Silicon dioxide</subject><subject>Sulfur</subject><subject>Trees</subject><subject>Trimethylolpropane triacrylate</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtKA0EQXETBEHPwDxY8eVidxz6PYUk0EFQ08br0THrIxMnOOjNB4n_4v26MiH3pLqjq6q4ouqTkhvOK3HauIoxwyk-iAWOsSKqCFqf_5vNo5P2G9FVRXmb5IPoab9Fo6yDgKp4YlMFpCSZZOMT4Gb32AdoQ12twIAO6HmvpY6vi5Wsya3XQP8raWe-TuW7fevBkzR7Dem-wxfgBWivttrNeB_Txhw7r-GXnFEhMprtWBm1bMPqz1x2oXpve_yI6U2A8jn77MFpOJ4v6Ppk_3s3q8TyRrGIhAUUyVUBBhGAkr7hAoFKxfJVRSEVeZiUDgSUIngopFRa5SpEDEzTjQskVH0ZXx72ds-879KHZ2J3r7_ENS8uy5FVFip51fWTJw5cOVdM5vQW3byhpDsE3f8Hzby44ekM</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Yong-Qi</creator><creator>Yu, Ping-Lan</creator><creator>Sun, Wei-Feng</creator><creator>Wang, Xuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</title><author>Zhang, Yong-Qi ; Yu, Ping-Lan ; Sun, Wei-Feng ; Wang, Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coupling agents</topic><topic>Cross-linked polyethylene</topic><topic>Crosslinking</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electrical resistance</topic><topic>Electrical resistivity</topic><topic>Ethanol</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Fractal geometry</topic><topic>Grafting</topic><topic>Infrared spectroscopy</topic><topic>Insulation</topic><topic>Interfaces</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Silanes</topic><topic>Silicon dioxide</topic><topic>Sulfur</topic><topic>Trees</topic><topic>Trimethylolpropane triacrylate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong-Qi</creatorcontrib><creatorcontrib>Yu, Ping-Lan</creatorcontrib><creatorcontrib>Sun, Wei-Feng</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong-Qi</au><au>Yu, Ping-Lan</au><au>Sun, Wei-Feng</au><au>Wang, Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica</atitle><jtitle>Processes</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>313</spage><pages>313-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Given the high interest in promoting crosslinking efficiency of ultraviolet-initiated crosslinking technique and ameliorating electrical resistance of crosslinked polyethylene (XLPE) materials, we have developed the funcionalized-SiO2/XLPE nanocomposites by chemically grafting auxiliary crosslinkers onto nanosilica surfaces. Trimethylolpropane triacrylate (TMPTA) as an effective auxiliary crosslinker for polyethylene is grafted successfully on nanosilica surfaces through thiolene-click chemical reactions with coupling agents of sulfur silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), as characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The functionalized SiO2 nanoparticles could be dispersively filled into polyethylene matrix even at a high filling content that would generally produce agglomerations of neat SiO2 nanofillers. Ultraviolet-initiated polyethylene crosslinking reactions are efficiently stimulated by TMPTA grafted onto surfaces of SiO2 nanofillers, averting thermal migrations out of polyethylene matrix. Electrical-tree pathways and growth mechanism are specifically investigated by elucidating the microscopic tree-morphology with fractal dimension and simulating electric field distributions with finite-element method. Near nano-interfaces where the shielded-out electric fluxlines concentrate, the highly enhanced electric fields will stimulate partial discharging and thus lead to the electrical-trees being able to propagate along the routes between nanofillers. Surface-modified SiO2 nanofillers evidently elongate the circuitous routes of electrical-tree growth to be restricted from directly developing toward ground electrode, which accounts for the larger fractal dimension and shorter length of electrical-trees in the functionlized-SiO2/XLPE nanocomposite compared with XLPE and neat-SiO2/XLPE nanocomposite. Polar-groups on the modified nanosilica surfaces inhibit electrical-tree growth and simultaneously introduce deep traps impeding charge injections, accounting for the significant improvements of electrical-tree resistance and dielectric breakdown strength. Combining surface functionalization and nanodielectric technology, we propose a strategy to develop XLPE materials with high electrical resistance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9020313</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2021-02, Vol.9 (2), p.313
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2488839907
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Chemical reactions
Chemistry
Coupling agents
Cross-linked polyethylene
Crosslinking
Dielectric breakdown
Dielectric strength
Electric fields
Electrical resistance
Electrical resistivity
Ethanol
Finite element method
Fourier transforms
Fractal geometry
Grafting
Infrared spectroscopy
Insulation
Interfaces
Light
Mathematical models
Mechanical properties
Morphology
Nanocomposites
Nanoparticles
NMR
Nuclear magnetic resonance
Polyethylene
Polymers
Scanning electron microscopy
Silanes
Silicon dioxide
Sulfur
Trees
Trimethylolpropane triacrylate
title Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ameliorated%20Electrical-Tree%20Resistant%20Characteristics%20of%20UV-Initiated%20Cross-Linked%20Polyethylene%20Nanocomposites%20with%20Surface-Functionalized%20Nanosilica&rft.jtitle=Processes&rft.au=Zhang,%20Yong-Qi&rft.date=2021-02-01&rft.volume=9&rft.issue=2&rft.spage=313&rft.pages=313-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9020313&rft_dat=%3Cproquest_cross%3E2488839907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-af05f7a70bb20693bea1cf26d51a4b68582abe8ab34bccfe76f4e3a2b153bfcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488839907&rft_id=info:pmid/&rfr_iscdi=true