Loading…
Graphene sheet-encased silica/sulfur composite cathode for improved cyclability of lithium-sulfur batteries
The “shuttle effect” of polysulfides is a serious issue, resulting in a decrease in the life-cycle of lithium-sulfur (Li-S) batteries. To inhibit the shuttle effect, a combination of graphene oxide and silica has been adopted in this work. Here, two different ratios of sulfur/silicon dioxide/partial...
Saved in:
Published in: | Journal of solid state electrochemistry 2021-03, Vol.25 (3), p.939-948 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The “shuttle effect” of polysulfides is a serious issue, resulting in a decrease in the life-cycle of lithium-sulfur (Li-S) batteries. To inhibit the shuttle effect, a combination of graphene oxide and silica has been adopted in this work. Here, two different ratios of sulfur/silicon dioxide/partially reduced graphene oxide (S/SiO
2
/prGO - 70:20:10 and 70:10:20) composite materials were prepared via a melt diffusion method and were used as a cathode for a Li-S battery. The wrinkled sheets of partially reduced graphene oxide not only provide a conductive network for electron transport, but also ease the volume changes of active material during cycling. The 20 wt% of prGO present in the S/SiO
2
/prGO cathode delivers initial discharge capacity of 783 mAh g
−1
at 0.2 C and remains at 491 mAh g
−1
over 300 cycles, with low capacity decay rate of 0.12% per cycle. The better electrochemical performance indicates that the electrode containing 20 wt% of prGO with silica effectively suppresses the “shuttle effect” of polysulfide dissolution.
Graphical abstract |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-020-04747-3 |