Loading…

Evaluation of high-energy milling efficiency in stainless steel with addition of vanadium carbides

The production of duplex stainless steel powders with the addition of carbides by high-energy mechanical milling is a novel method for recycling chips. With the increase in the consumption of raw material and energy and of the generation of residues, recycling is necessary due to environmental and i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2018-03, Vol.95 (5-8), p.3093-3099
Main Authors: Mendonça, C. S. P., Dias, A. N. O., Melo, M. L. N. M., Ribeiro, V. A. S., da Silva, M. R., Oliveira, A. F., Silva, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The production of duplex stainless steel powders with the addition of carbides by high-energy mechanical milling is a novel method for recycling chips. With the increase in the consumption of raw material and energy and of the generation of residues, recycling is necessary due to environmental and industrial reasons. In this study, the effect of the addition of vanadium carbide on the morphology, particle size, and magnetic properties of the powders was investigated. The milling was realized using a planetary ball mill for 50 h at a milling speed of 350 rpm. The ball-to-powder weight ratio used was 20:1 and the 0, 1, and 3% wt. vanadium carbide addition. Produced duplex stainless steel powders from recycling chips were characterized by a scanning electron microscope (SEM), a laser particle size analyzer, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and magnetic characterization. The milling process led to the formation of martensite induced by deformation phase. It was verified that the addition of 3% carbide was the most effective in reduction of the particle size when compared to milling without carbide. The particle size of fabricated powders after 50 h of milling with 3% vanadium carbide addition was about 174 times lower than that of initial chips.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-017-1297-7