Loading…
Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability
As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders th...
Saved in:
Published in: | Electrochimica acta 2021-02, Vol.368, p.137615, Article 137615 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As charge storage occurs both on the surface and in the bulk of material, the dynamics of charge storage is a key issue in the practice of energy storage. Although the energy storage can be increased in the bulk of the material, it often suffers from a quite slow kinetics, which seriously hinders the rate capability. Keeping high surface-induced capacitive contribution is proposed to address this issue. Herein, a porous scaffold, TiO2 nanotube arrays grown in a Ti foil (TiO2 NTs/Ti) is selected as the current collector for electrodeposition of porous polyaniline/reduced graphene oxide (PANI/rGO) hybrid film. The capacitive contribution of PANI/rGO@TiO2/Ti is quantitatively evaluated, showing a high surface-induced capacitive contribution up to 58% at high rates (>25 mV s−1) and large electron transfer coefficient of 2. As a result, the electrode not only shows an ultrahigh specific capacity of 908 C g−1 at 1 mV s−1, but also delivers an outstanding rate capacity of 310 C g−1 at 500 mV s−1. PANI/rGO@TiO2/Ti also shows excellent cycling stability with 80% capacity retention after 10,000 cycles at a high current density of 25 A g−1. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2020.137615 |