Loading…
Two-Level Free-Form and Axial Deformation for Exploratory Aerodynamic Shape Optimization
An intuitive shape parameterization and control technique suitable for high-fidelity aerodynamic shape optimization is presented. It relies on the principles of free-form and axial deformation, enabling thorough exploration of the design space while keeping the number of design variables manageable....
Saved in:
Published in: | AIAA journal 2015-07, Vol.53 (7), p.2015-2026 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An intuitive shape parameterization and control technique suitable for high-fidelity aerodynamic shape optimization is presented. It relies on the principles of free-form and axial deformation, enabling thorough exploration of the design space while keeping the number of design variables manageable. Surface sensitivities to the design variables are readily available; their inclusion in a highly efficient and robust adjoint-based optimization methodology involving linearly elastic volume mesh deformation and a Newton–Krylov solver for the Euler equations is described. The flexibility of the proposed approach is demonstrated through the exploratory shape optimization of a three-pronged feathered winglet, leading to a span efficiency of 1.19 under a height-to-span ratio constraint of 0.1, and an optimization of a regional jet wing at transonic speed where a winglet is allowed to develop starting from a planar wingtip extension, leading to an 18.8% reduction in drag. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/1.J053575 |