Loading…

Fabrication and thermophysical properties of UO2-UB2 and UO2-UB4 composites sintered via spark plasma sintering

Uranium dioxide (UO2) composites with uranium diboride (UB2) and uranium tetraboride (UB4) have been proposed as advanced fuel candidates due to their high thermal conductivity, high melting point, high fissile density and their ability to incorporate a built-in burnable poison by tailoring the targ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2021-02, Vol.544, p.152690, Article 152690
Main Authors: Kardoulaki, E., Frazer, D.M., White, J.T., Carvajal, U., Nelson, A.T., Byler, D.D., Saleh, T.A., Gong, B., Yao, T., Lian, J., McClellan, K.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uranium dioxide (UO2) composites with uranium diboride (UB2) and uranium tetraboride (UB4) have been proposed as advanced fuel candidates due to their high thermal conductivity, high melting point, high fissile density and their ability to incorporate a built-in burnable poison by tailoring the targeted 10B/11B ratio. As such, it is important to assess the fabrication, and thermal and micromechanical properties of such composites. In this work, UO2-UB2 and UO2-UB4 samples with boride phase fractions of 5, 15 and 30 wt% were fabricated to high densities (above 95% theoretical density) via spark plasma sintering (SPS). This enabled sintering at relatively low temperatures and short timescales. SPS also aided in maintaining the target phase fractions of the samples as reactions between the constituent phases were suppressed due to the short timescales and reducing environment during sintering. Thermal diffusivity measurements from 299 to 1273 K were conducted through laser flash analysis (LFA). The diffusivity increased as a function of boride weight fraction, and UB2 additions increased the thermal diffusivity of the composites more than UB4 additions. Assessment of the LFA results indicated that in-situ reactions between the UO2 and boride phases that suppress the thermal diffusivity occur above 800 K for all samples. Oxidation of the boride phase was proposed as the underlying reaction. This was supported by thermodynamic assessments from the literature, as well as microstructural, crystallographic, and nanoindentation characterization performed on these samples.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2020.152690