Loading…
Hypoxia-inducible Factors—Their Regulation and Function in Neural Tissue
Hypoxia-inducible factors (HIF) are key transcription factors that alter gene expression in hypoxia, and play a central role in ensuring an adaptive response to low oxygen levels in the brain. This review provides information on the functional role of HIF in adaptive tissue responses, specifically i...
Saved in:
Published in: | Human physiology 2020-12, Vol.46 (8), p.895-899 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hypoxia-inducible factors (HIF) are key transcription factors that alter gene expression in hypoxia, and play a central role in ensuring an adaptive response to low oxygen levels in the brain. This review provides information on the functional role of HIF in adaptive tissue responses, specifically in response to metabolic shifts, in angiogenesis, apoptosis and others, which plays an important role in cell survival under hypoxic conditions. We describe the molecular structure of the main HIF subunits, changes in their expression and decay at normal oxygen levels, as well as in acute and chronic hypoxia, and the factors regulating these changes. Special attention is paid to the role of microRNAs in regulating HIF changes, as well as the interaction of HIF subunits with mitochondrial factors. The role of HIF in neuroprotection and neuroglial adaptive changes is described in detail. The importance of further study of HIF’s physiological role is noted, to obtain new information about the pathogenesis of hypoxic brain injury, including its early stages, which determines the risk of later neurological disease. |
---|---|
ISSN: | 0362-1197 1608-3164 |
DOI: | 10.1134/S0362119720080022 |