Loading…
An image super-resolution deep learning network based on multi-level feature extraction module
Due to the lack of depth of the super-resolution (SR) method based on shallow networks, the feature maps of different convolutional layers have similar receptive fields, so that the performance improvement is not obvious. To solve this problem effectively, we propose an image SR reconstruction deep...
Saved in:
Published in: | Multimedia tools and applications 2021-02, Vol.80 (5), p.7063-7075 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the lack of depth of the super-resolution (SR) method based on shallow networks, the feature maps of different convolutional layers have similar receptive fields, so that the performance improvement is not obvious. To solve this problem effectively, we propose an image SR reconstruction deep model based on a new multi-level feature extraction module in this paper. The method constructs an improved multi-level feature extraction module using the dense connection to obtain a deeper network and richer hierarchical feature maps for the SR task. In addition, we apply the loss function combined with the perceptual characteristics to improve the visual effect of the reconstructed image. Experiments show that the proposed method works well at reconstructed images with different magnification. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-020-09958-4 |