Loading…

Entropy estimation for robust image segmentation in presence of non Gaussian noise

In this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Markov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2021-02, Vol.80 (5), p.6991-7021
Main Authors: de la Rosa, José I., Gutiérrez, Osvaldo, Villa-Hernández, Jesús, Moreno, Gamaliel, González, Efrén, Alaniz, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Markov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) approach based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were conducted for different kind of images degraded with impulsive noise and other non-Gaussian distributions, where the segmentation results are very satisfactory comparing them with respect to recent robust approaches based on the fuzzy c-means (FCM) segmentation.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-020-09999-9