Loading…
Spectrality of a class of planar self-affine measures with three-element digit sets
Let μ M , D be the self-affine measure generated by an expanding integer matrix M ∈ M 2 ( Z ) and an integer three-element digit set D = { ( 0 , 0 ) T , ( α , β ) T , ( γ , η ) T } . In this paper, we show that if 3 ∣ det ( M ) and 3 ∤ α η - β γ , then L 2 ( μ M , D ) has an orthogonal basis of expo...
Saved in:
Published in: | Archiv der Mathematik 2021-03, Vol.116 (3), p.327-334 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
μ
M
,
D
be the self-affine measure generated by an expanding integer matrix
M
∈
M
2
(
Z
)
and an integer three-element digit set
D
=
{
(
0
,
0
)
T
,
(
α
,
β
)
T
,
(
γ
,
η
)
T
}
. In this paper, we show that if
3
∣
det
(
M
)
and
3
∤
α
η
-
β
γ
, then
L
2
(
μ
M
,
D
)
has an orthogonal basis of exponential functions if and only if
M
∗
u
∈
3
Z
2
, where
u
=
(
η
-
2
β
,
2
α
-
γ
)
T
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-020-01554-0 |