Loading…

Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid

Reaction pathways for conversion of agricultural waste biomass into formic acid are reviewed for established (fast pyrolysis, acid hydrolysis, wet oxidation, catalytic oxidation), and cutting-edge (photocatalysis, electrocatalysis) methods. Characteristics of each reaction pathway are analyzed and r...

Full description

Saved in:
Bibliographic Details
Published in:Green chemistry : an international journal and green chemistry resource : GC 2021-03, Vol.23 (4), p.1536-1561
Main Authors: Shen, Feng, Smith Jr, Richard Lee, Li, Jialu, Guo, Haixin, Zhang, Xiao, Qi, Xinhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reaction pathways for conversion of agricultural waste biomass into formic acid are reviewed for established (fast pyrolysis, acid hydrolysis, wet oxidation, catalytic oxidation), and cutting-edge (photocatalysis, electrocatalysis) methods. Characteristics of each reaction pathway are analyzed and ranked with sustainability indicators (environment, economic, social) and lead to the conclusion that catalytic oxidation has the highest sustainability score for conversion of agricultural waste biomass to formic acid in terms of yield, waste emissions, feedstock cost, and innovation potential. Reaction systems for catalytic oxidation are analyzed in detail including catalysts, oxidants, solvents, catalyst recycle and product separation including large-scale aspects. Future perspectives and challenges for the efficient conversion of agricultural waste biomass into formic acid are proposed. Reaction pathways for conversion of agricultural waste biomass into formic acid are reviewed for established (fast pyrolysis, acid hydrolysis, wet oxidation, catalytic oxidation), and cutting-edge (photocatalysis, electrocatalysis) methods.
ISSN:1463-9262
1463-9270
DOI:10.1039/d0gc04263c