Loading…

‘H-states’: exact solutions for a rotating hollow vortex

Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-03, Vol.913, Article R5
Main Authors: Crowdy, D.G., Nelson, R.B., Krishnamurthy, V.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2021.55