Loading…
‘H-states’: exact solutions for a rotating hollow vortex
Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assig...
Saved in:
Published in: | Journal of fluid mechanics 2021-03, Vol.913, Article R5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 913 |
creator | Crowdy, D.G. Nelson, R.B. Krishnamurthy, V.S. |
description | Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made. |
doi_str_mv | 10.1017/jfm.2021.55 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494161949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_55</cupid><sourcerecordid>2494161949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</originalsourceid><addsrcrecordid>eNpt0M1KAzEUhuEgCtbqyhsIuJTU_M1MIm5E1AoFN7oOmfSkTpk2NUm17noZenu9Eqe04MbV2Tx8B16EzhkdMMqqq6mfDTjlbFAUB6jHZKlJVcriEPUo5ZwwxukxOklpSikTVFc9dLNZfw9JyjZD2qx_rjGsrMs4hXaZmzBP2IeILY6hE818gt9C24ZP_BFihtUpOvK2TXC2v330-nD_cjcko-fHp7vbEXFClJmUSulagmVeglPKUe0rKAWHyo29lVIq4QUDV3CQSlupxx48s7WSwKmsatFHF7vdRQzvS0jZTMMyzruXhkstWcm01J263CkXQ0oRvFnEZmbjl2HUbPOYLo_Z5jFF0Wmy13ZWx2Y8gb_R__wvl5doqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494161949</pqid></control><display><type>article</type><title>‘H-states’: exact solutions for a rotating hollow vortex</title><source>Cambridge University Press</source><creator>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</creator><creatorcontrib>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</creatorcontrib><description>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.55</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Capillary waves ; Computational fluid dynamics ; Deformation ; Exact solutions ; Fluid mechanics ; Fluids ; HuR protein ; JFM Rapids ; Rotation ; Shape ; Surface tension ; Vortices ; Vorticity ; Water waves</subject><ispartof>Journal of fluid mechanics, 2021-03, Vol.913, Article R5</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</citedby><cites>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</cites><orcidid>0000-0003-2768-5735 ; 0000-0002-1518-0994 ; 0000-0002-7162-0181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021000550/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Crowdy, D.G.</creatorcontrib><creatorcontrib>Nelson, R.B.</creatorcontrib><creatorcontrib>Krishnamurthy, V.S.</creatorcontrib><title>‘H-states’: exact solutions for a rotating hollow vortex</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</description><subject>Capillary waves</subject><subject>Computational fluid dynamics</subject><subject>Deformation</subject><subject>Exact solutions</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>HuR protein</subject><subject>JFM Rapids</subject><subject>Rotation</subject><subject>Shape</subject><subject>Surface tension</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpt0M1KAzEUhuEgCtbqyhsIuJTU_M1MIm5E1AoFN7oOmfSkTpk2NUm17noZenu9Eqe04MbV2Tx8B16EzhkdMMqqq6mfDTjlbFAUB6jHZKlJVcriEPUo5ZwwxukxOklpSikTVFc9dLNZfw9JyjZD2qx_rjGsrMs4hXaZmzBP2IeILY6hE818gt9C24ZP_BFihtUpOvK2TXC2v330-nD_cjcko-fHp7vbEXFClJmUSulagmVeglPKUe0rKAWHyo29lVIq4QUDV3CQSlupxx48s7WSwKmsatFHF7vdRQzvS0jZTMMyzruXhkstWcm01J263CkXQ0oRvFnEZmbjl2HUbPOYLo_Z5jFF0Wmy13ZWx2Y8gb_R__wvl5doqg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Crowdy, D.G.</creator><creator>Nelson, R.B.</creator><creator>Krishnamurthy, V.S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2768-5735</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid></search><sort><creationdate>20210301</creationdate><title>‘H-states’: exact solutions for a rotating hollow vortex</title><author>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary waves</topic><topic>Computational fluid dynamics</topic><topic>Deformation</topic><topic>Exact solutions</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>HuR protein</topic><topic>JFM Rapids</topic><topic>Rotation</topic><topic>Shape</topic><topic>Surface tension</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowdy, D.G.</creatorcontrib><creatorcontrib>Nelson, R.B.</creatorcontrib><creatorcontrib>Krishnamurthy, V.S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowdy, D.G.</au><au>Nelson, R.B.</au><au>Krishnamurthy, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>‘H-states’: exact solutions for a rotating hollow vortex</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>913</volume><artnum>R5</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.55</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2768-5735</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-03, Vol.913, Article R5 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2494161949 |
source | Cambridge University Press |
subjects | Capillary waves Computational fluid dynamics Deformation Exact solutions Fluid mechanics Fluids HuR protein JFM Rapids Rotation Shape Surface tension Vortices Vorticity Water waves |
title | ‘H-states’: exact solutions for a rotating hollow vortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%98H-states%E2%80%99:%20exact%20solutions%20for%20a%20rotating%20hollow%20vortex&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Crowdy,%20D.G.&rft.date=2021-03-01&rft.volume=913&rft.artnum=R5&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.55&rft_dat=%3Cproquest_cross%3E2494161949%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494161949&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_55&rfr_iscdi=true |