Loading…

‘H-states’: exact solutions for a rotating hollow vortex

Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-03, Vol.913, Article R5
Main Authors: Crowdy, D.G., Nelson, R.B., Krishnamurthy, V.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3
cites cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 913
creator Crowdy, D.G.
Nelson, R.B.
Krishnamurthy, V.S.
description Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem & Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur & Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.
doi_str_mv 10.1017/jfm.2021.55
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494161949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_55</cupid><sourcerecordid>2494161949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</originalsourceid><addsrcrecordid>eNpt0M1KAzEUhuEgCtbqyhsIuJTU_M1MIm5E1AoFN7oOmfSkTpk2NUm17noZenu9Eqe04MbV2Tx8B16EzhkdMMqqq6mfDTjlbFAUB6jHZKlJVcriEPUo5ZwwxukxOklpSikTVFc9dLNZfw9JyjZD2qx_rjGsrMs4hXaZmzBP2IeILY6hE818gt9C24ZP_BFihtUpOvK2TXC2v330-nD_cjcko-fHp7vbEXFClJmUSulagmVeglPKUe0rKAWHyo29lVIq4QUDV3CQSlupxx48s7WSwKmsatFHF7vdRQzvS0jZTMMyzruXhkstWcm01J263CkXQ0oRvFnEZmbjl2HUbPOYLo_Z5jFF0Wmy13ZWx2Y8gb_R__wvl5doqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494161949</pqid></control><display><type>article</type><title>‘H-states’: exact solutions for a rotating hollow vortex</title><source>Cambridge University Press</source><creator>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</creator><creatorcontrib>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</creatorcontrib><description>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem &amp; Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur &amp; Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.55</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Capillary waves ; Computational fluid dynamics ; Deformation ; Exact solutions ; Fluid mechanics ; Fluids ; HuR protein ; JFM Rapids ; Rotation ; Shape ; Surface tension ; Vortices ; Vorticity ; Water waves</subject><ispartof>Journal of fluid mechanics, 2021-03, Vol.913, Article R5</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</citedby><cites>FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</cites><orcidid>0000-0003-2768-5735 ; 0000-0002-1518-0994 ; 0000-0002-7162-0181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021000550/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Crowdy, D.G.</creatorcontrib><creatorcontrib>Nelson, R.B.</creatorcontrib><creatorcontrib>Krishnamurthy, V.S.</creatorcontrib><title>‘H-states’: exact solutions for a rotating hollow vortex</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem &amp; Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur &amp; Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</description><subject>Capillary waves</subject><subject>Computational fluid dynamics</subject><subject>Deformation</subject><subject>Exact solutions</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>HuR protein</subject><subject>JFM Rapids</subject><subject>Rotation</subject><subject>Shape</subject><subject>Surface tension</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpt0M1KAzEUhuEgCtbqyhsIuJTU_M1MIm5E1AoFN7oOmfSkTpk2NUm17noZenu9Eqe04MbV2Tx8B16EzhkdMMqqq6mfDTjlbFAUB6jHZKlJVcriEPUo5ZwwxukxOklpSikTVFc9dLNZfw9JyjZD2qx_rjGsrMs4hXaZmzBP2IeILY6hE818gt9C24ZP_BFihtUpOvK2TXC2v330-nD_cjcko-fHp7vbEXFClJmUSulagmVeglPKUe0rKAWHyo29lVIq4QUDV3CQSlupxx48s7WSwKmsatFHF7vdRQzvS0jZTMMyzruXhkstWcm01J263CkXQ0oRvFnEZmbjl2HUbPOYLo_Z5jFF0Wmy13ZWx2Y8gb_R__wvl5doqg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Crowdy, D.G.</creator><creator>Nelson, R.B.</creator><creator>Krishnamurthy, V.S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2768-5735</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid></search><sort><creationdate>20210301</creationdate><title>‘H-states’: exact solutions for a rotating hollow vortex</title><author>Crowdy, D.G. ; Nelson, R.B. ; Krishnamurthy, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary waves</topic><topic>Computational fluid dynamics</topic><topic>Deformation</topic><topic>Exact solutions</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>HuR protein</topic><topic>JFM Rapids</topic><topic>Rotation</topic><topic>Shape</topic><topic>Surface tension</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowdy, D.G.</creatorcontrib><creatorcontrib>Nelson, R.B.</creatorcontrib><creatorcontrib>Krishnamurthy, V.S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowdy, D.G.</au><au>Nelson, R.B.</au><au>Krishnamurthy, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>‘H-states’: exact solutions for a rotating hollow vortex</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>913</volume><artnum>R5</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Exact solutions are found for an $N$-fold rotationally symmetric, steadily rotating hollow vortex where a continuous real parameter governs its deformation from a circular shape and $N \ge 2$ is an integer. The vortex shape is found as part of the solution. Following the designation ‘V-states’ assigned to steadily rotating vortex patches (Deem &amp; Zabusky, Phys. Rev. Lett., vol. 40, 1978, pp. 859–862) we call the analogous rotating hollow vortices ‘H-states’. Unlike V-states where all but the $N=2$ solution – the Kirchhoff ellipse – must be found numerically, it is shown that all H-state solutions can be written down in closed form. Surface tension is not present on the boundaries of the rotating H-states but the latter are shown to be intimately related to solutions for a non-rotating hollow vortex with surface tension on its boundary (Crowdy, Phys. Fluids, vol. 11, 1999a, pp. 2836–2845). It is also shown how the results here relate to recent work on constant-vorticity water waves (Hur &amp; Wheeler, J. Fluid Mech., vol. 896, 2020, R1) where a connection to classical capillary waves (Crapper, J. Fluid Mech., vol. 2, 1957, pp. 532–540) is made.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.55</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2768-5735</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-03, Vol.913, Article R5
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2494161949
source Cambridge University Press
subjects Capillary waves
Computational fluid dynamics
Deformation
Exact solutions
Fluid mechanics
Fluids
HuR protein
JFM Rapids
Rotation
Shape
Surface tension
Vortices
Vorticity
Water waves
title ‘H-states’: exact solutions for a rotating hollow vortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%98H-states%E2%80%99:%20exact%20solutions%20for%20a%20rotating%20hollow%20vortex&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Crowdy,%20D.G.&rft.date=2021-03-01&rft.volume=913&rft.artnum=R5&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.55&rft_dat=%3Cproquest_cross%3E2494161949%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-6889b4ea1f4ec88c09f7e632e7cdfa44483f31ec52e489a49dfef1ab84e2047b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494161949&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_55&rfr_iscdi=true