Loading…

Contamination assessment, health risk evaluation, and source identification of heavy metals in the soil-rice system of typical agricultural regions on the southeast coast of China

To quantitatively assess heavy metal accumulation and potential ecological and human health risks as well as analyze the sources of metals in a typical soil-rice system located on the southeast coast of China, 120 topsoil samples and corresponding rice grain samples were collected across the study a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-03, Vol.28 (10), p.12870-12880
Main Authors: Ren, Yanjun, Lin, Meng, Liu, Qingming, Zhang, Zhonghao, Fei, Xufeng, Xiao, Rui, Lv, Xiaonan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To quantitatively assess heavy metal accumulation and potential ecological and human health risks as well as analyze the sources of metals in a typical soil-rice system located on the southeast coast of China, 120 topsoil samples and corresponding rice grain samples were collected across the study area. The concentrations of As, Cd, Pb, Cr, Hg, Zn, Cu, and Ni were analyzed. The results revealed that Hg, Cd, and Cu were the main pollutants in soils. Besides, according to geo-accumulation value of Hg, 18.3% of samples were at or above moderate contamination levels. Additionally, the soil was in moderate ecological risk from combined heavy metal pollution, and 49.7% and 27.0% of this risk could be attributed to Hg and Cd pollution, respectively, due to their high toxic-response factors. For the rice samples, Cd content showed the highest biological accumulation coefficient value (40.8%) in rice grains and was slightly greater than its maximum allowable value (MAV) (0.2 mg/kg) in 7.5% of samples, whereas the other metals were all lower than their corresponding MAVs. Heavy metal exposure (especially As exposure) via rice consumption causes significant carcinogenic and non-carcinogenic risks to adults, and non-carcinogenic risk to children, while the carcinogenic risk to children was at tolerable level. Greater rice consumption might be responsible for the greater health risk to adults than children. Natural sources (loaded heavily with Cr and Ni) such as lithogenic components and soil parent materials, agricultural activities (loaded heavily with Cd, Cu, and Zn), especially excessive use of pesticides and fertilizers, and industrial activities (loaded heavily with Hg, Pb, and As) including vehicle emissions, coal combustion, and those of the textile and chemical industries were identified as the main sources. Effective regulations should be enforced to guarantee the safety of farm produce and protect ecological and human health in the study area.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-11229-6