Loading…

Spanwise velocity statistics in high-Reynolds-number turbulent boundary layers

Spanwise velocity statistics from high-Reynolds-number turbulent boundary layers are reported. The dataset combines efforts spanning over a decade at the University of Melbourne to accurately capture Reynolds number ($Re$) trends for the spanwise velocity, nominally over one order of magnitude chang...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-03, Vol.913, Article A35
Main Authors: Baidya, R., Philip, J., Hutchins, N., Monty, J.P., Marusic, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spanwise velocity statistics from high-Reynolds-number turbulent boundary layers are reported. The dataset combines efforts spanning over a decade at the University of Melbourne to accurately capture Reynolds number ($Re$) trends for the spanwise velocity, nominally over one order of magnitude change in $Re$, using custom subminiature cross-wire probes that minimise spatial resolution effects and misalignment errors. The spanwise velocity ($v$) variance is found to exhibit an $Re$ invariant logarithmic slope in the log region, in a similar manner to the streamwise velocity ($u$), which is consistent with the existence of self-similar features within wall-bounded flows. However, unlike the $u$-variance, it appears that the logarithmic $v$-variance trend continues to extend towards the wall. The increase in the $v$-variance with $Re$ in the log region is found to be due to ‘intermediate-scale eddies’, which follow distance-from-the-wall scaling. This results in the $v$-spectrogram exhibiting a dominant energetic ridge across the intermediate-scales, a trend that is not clearly observed in the $u$-spectrogram. Other features of the $v$-spectrogram are found to be similar to the $u$-spectrogram, such as showing small-scale near-wall features that scale universally with viscous units, and the influence of large-scale $v$ signals residing in the log region that extend to the wall, resulting in a large-scale $v$ footprint in the near-wall region. The observed behaviour of the $v$-spectrogram with changing $Re$ is used to construct a model for the $v$-variance based on contributions from small-, intermediate- and large-scales, leading to a predictive tool at asymptotically high $Re$.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2020.1129