Loading…
Extremal general affine surface areas
For a convex body \(K\) in \(\mathbb{R}^n\), we introduce and study the extremal general affine surface areas, defined by \[ {\rm IS}_{\varphi}(K):=\sup_{K^\prime\subset K}{\rm as}_{\varphi}(K),\quad {\rm os}_{\psi}(K):=\inf_{K^\prime\supset K}{\rm as}_{\psi}(K) \] where \({\rm as}_{\varphi}(K)\) an...
Saved in:
Published in: | arXiv.org 2021-07 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a convex body \(K\) in \(\mathbb{R}^n\), we introduce and study the extremal general affine surface areas, defined by \[ {\rm IS}_{\varphi}(K):=\sup_{K^\prime\subset K}{\rm as}_{\varphi}(K),\quad {\rm os}_{\psi}(K):=\inf_{K^\prime\supset K}{\rm as}_{\psi}(K) \] where \({\rm as}_{\varphi}(K)\) and \({\rm as}_{\psi}(K)\) are the \(L_\varphi\) and \(L_\psi\) affine surface area of \(K\), respectively. We prove that there exist extremal convex bodies that achieve the supremum and infimum, and that the functionals \({\rm IS}_{\varphi}\) and \({\rm os}_{\psi}\) are continuous. In our main results, we prove Blaschke-Santaló type inequalities and inverse Santaló type inequalities for the extremal general affine surface areas. This article may be regarded as an Orlicz extension of the recent work of Giladi, Huang, Sch\"utt and Werner (2020), who introduced and studied the extremal \(L_p\) affine surface areas. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2103.00294 |