Loading…

Extremal general affine surface areas

For a convex body \(K\) in \(\mathbb{R}^n\), we introduce and study the extremal general affine surface areas, defined by \[ {\rm IS}_{\varphi}(K):=\sup_{K^\prime\subset K}{\rm as}_{\varphi}(K),\quad {\rm os}_{\psi}(K):=\inf_{K^\prime\supset K}{\rm as}_{\psi}(K) \] where \({\rm as}_{\varphi}(K)\) an...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Author: Hoehner, Steven
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a convex body \(K\) in \(\mathbb{R}^n\), we introduce and study the extremal general affine surface areas, defined by \[ {\rm IS}_{\varphi}(K):=\sup_{K^\prime\subset K}{\rm as}_{\varphi}(K),\quad {\rm os}_{\psi}(K):=\inf_{K^\prime\supset K}{\rm as}_{\psi}(K) \] where \({\rm as}_{\varphi}(K)\) and \({\rm as}_{\psi}(K)\) are the \(L_\varphi\) and \(L_\psi\) affine surface area of \(K\), respectively. We prove that there exist extremal convex bodies that achieve the supremum and infimum, and that the functionals \({\rm IS}_{\varphi}\) and \({\rm os}_{\psi}\) are continuous. In our main results, we prove Blaschke-Santaló type inequalities and inverse Santaló type inequalities for the extremal general affine surface areas. This article may be regarded as an Orlicz extension of the recent work of Giladi, Huang, Sch\"utt and Werner (2020), who introduced and studied the extremal \(L_p\) affine surface areas.
ISSN:2331-8422
DOI:10.48550/arxiv.2103.00294