Loading…

Quantification and analysis of coating surface strains in T-bend tests

Pre-painted sheet metal (e.g. coil coated with polyester-melamine) undergoes large deformations when formed into architectural cladding or white goods. The coatings provide protection and superior aesthetics, so must withstand failure by cracking or delamination during forming. The T-bend test is an...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2021-03, Vol.113 (3-4), p.1125-1142
Main Authors: Sorce, Fabian S., Ngo, Sonny, Lowe, Chris, Taylor, Ambrose C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pre-painted sheet metal (e.g. coil coated with polyester-melamine) undergoes large deformations when formed into architectural cladding or white goods. The coatings provide protection and superior aesthetics, so must withstand failure by cracking or delamination during forming. The T-bend test is an industry standard test used to qualitatively compare the formability of coatings and mimics the conditions experienced during hemming processes. The failure of coatings during forming is strain governed, so understanding the surface strains in the T-bend test is of great interest to manufacturers. For the first time, the maximum surface strains experienced during the T-bend test have been predicted using finite element modelling (FEM) and verified experimentally using digital image correlation. The experimental shapes of the deformed blank are compared with the FEM results for further verification. In addition, a novel analytical model is proposed to determine the maximum surface strains. It is shown that strains of up to ~ 225% are applied during a 0T test (bent around a zero thickness spacer) reducing to ~ 23% at 4T (bent around a four times sheet thickness spacer). The finite element model, experimental data and new analytical model show excellent agreement and indicate that behaviour is independent of the substrate thickness or material used. Understanding the strain behaviour quantifies the formerly qualitative T-bend. This will improve the efficacy of the test, allowing metal formers and coating developers to better understand the performance requirements, to reduce waste and to develop better coatings. Graphical abstract
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-021-06628-z