Loading…
An Optimized Neural Network Classification Method Based on Kernel Holistic Learning and Division
An optimized neural network classification method based on kernel holistic learning and division (KHLD) is presented. The proposed method is based on the learned radial basis function (RBF) kernel as the research object. The kernel proposed here can be considered a subspace region consisting of the...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optimized neural network classification method based on kernel holistic learning and division (KHLD) is presented. The proposed method is based on the learned radial basis function (RBF) kernel as the research object. The kernel proposed here can be considered a subspace region consisting of the same pattern category in the training sample space. By extending the region of the sample space of the original instances, relevant information between instances can be obtained from the subspace, and the classifier’s boundary can be far from the original instances; thus, the robustness and generalization performance of the classifier are enhanced. In concrete implementation, a new pattern vector is generated within each RBF kernel according to the instance optimization and screening method to characterize KHLD. Experiments on artificial datasets and several UCI benchmark datasets show the effectiveness of our method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/8857818 |