Loading…
Multimodal fusion using sparse CCA for breast cancer survival prediction
Effective understanding of a disease such as cancer requires fusing multiple sources of information captured across physical scales by multimodal data. In this work, we propose a novel feature embedding module that derives from canonical correlation analyses to account for intra-modality and inter-m...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Effective understanding of a disease such as cancer requires fusing multiple sources of information captured across physical scales by multimodal data. In this work, we propose a novel feature embedding module that derives from canonical correlation analyses to account for intra-modality and inter-modality correlations. Experiments on simulated and real data demonstrate how our proposed module can learn well-correlated multi-dimensional embeddings. These embeddings perform competitively on one-year survival classification of TCGA-BRCA breast cancer patients, yielding average F1 scores up to 58.69% under 5-fold cross-validation. |
---|---|
ISSN: | 2331-8422 |