Loading…
Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems
This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the sta...
Saved in:
Published in: | Computational & applied mathematics 2021-04, Vol.40 (3), Article 80 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-021-01474-x |