Loading…
Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems
This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the sta...
Saved in:
Published in: | Computational & applied mathematics 2021-04, Vol.40 (3), Article 80 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 40 |
creator | Garshasbi, M. Nikazad, T. Sanaei, F. |
description | This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters. |
doi_str_mv | 10.1007/s40314-021-01474-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499987465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499987465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAVaWWAf8lzhZovIrVWIDa8tJnkuqOA52UpUV3IEbchJcUokdq7eY-UbzBqFzSi4pIfIqCMKpSAijCaFCimR7gGY0JzIhnLBDNGOM5wnPCD9GJyGsCeGSCjFDHzewgdb1FroBO4M1rpztx0EPjet0i3Xfe6erV2ycj2LodQXfn19DYwEbr6u9zbpN061w6cau1v4dR6hswWLtm7ATjHcW135cYQ8t6AA4vIcBbDhFR0a3Ac72d45e7m6fFw_J8un-cXG9TCpOiyGpWZrKTEpGKBFVZTgzhaxFZvI6pUYWhmcCpNm9ntYpFFxkucigTGkpy9JoPkcXU25s9jZCGNTajT5WD4qJoihyKbI0utjkqrwLwYNRvW9sfEhRonZDq2loFYdWv0OrbYT4BIVo7lbg_6L_oX4Ax4KElg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499987465</pqid></control><display><type>article</type><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><source>Springer Nature</source><creator>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</creator><creatorcontrib>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</creatorcontrib><description>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01474-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Boundary conditions ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Finite difference method ; Iterative methods ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Perturbation ; Stability analysis</subject><ispartof>Computational & applied mathematics, 2021-04, Vol.40 (3), Article 80</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</citedby><cites>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</cites><orcidid>0000-0002-7310-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garshasbi, M.</creatorcontrib><creatorcontrib>Nikazad, T.</creatorcontrib><creatorcontrib>Sanaei, F.</creatorcontrib><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite difference method</subject><subject>Iterative methods</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Perturbation</subject><subject>Stability analysis</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAVaWWAf8lzhZovIrVWIDa8tJnkuqOA52UpUV3IEbchJcUokdq7eY-UbzBqFzSi4pIfIqCMKpSAijCaFCimR7gGY0JzIhnLBDNGOM5wnPCD9GJyGsCeGSCjFDHzewgdb1FroBO4M1rpztx0EPjet0i3Xfe6erV2ycj2LodQXfn19DYwEbr6u9zbpN061w6cau1v4dR6hswWLtm7ATjHcW135cYQ8t6AA4vIcBbDhFR0a3Ac72d45e7m6fFw_J8un-cXG9TCpOiyGpWZrKTEpGKBFVZTgzhaxFZvI6pUYWhmcCpNm9ntYpFFxkucigTGkpy9JoPkcXU25s9jZCGNTajT5WD4qJoihyKbI0utjkqrwLwYNRvW9sfEhRonZDq2loFYdWv0OrbYT4BIVo7lbg_6L_oX4Ax4KElg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Garshasbi, M.</creator><creator>Nikazad, T.</creator><creator>Sanaei, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7310-6776</orcidid></search><sort><creationdate>20210401</creationdate><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><author>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite difference method</topic><topic>Iterative methods</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Perturbation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garshasbi, M.</creatorcontrib><creatorcontrib>Nikazad, T.</creatorcontrib><creatorcontrib>Sanaei, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garshasbi, M.</au><au>Nikazad, T.</au><au>Sanaei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><artnum>80</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01474-x</doi><orcidid>https://orcid.org/0000-0002-7310-6776</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2021-04, Vol.40 (3), Article 80 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2499987465 |
source | Springer Nature |
subjects | Applications of Mathematics Applied physics Boundary conditions Computational mathematics Computational Mathematics and Numerical Analysis Finite difference method Iterative methods Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematical models Mathematics Mathematics and Statistics Matrix methods Perturbation Stability analysis |
title | Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20computational%20approach%20for%20a%20space%E2%80%93time%20fractional%20moving%20boundary%20problem%20arising%20from%20drug%20release%20systems&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Garshasbi,%20M.&rft.date=2021-04-01&rft.volume=40&rft.issue=3&rft.artnum=80&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01474-x&rft_dat=%3Cproquest_cross%3E2499987465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499987465&rft_id=info:pmid/&rfr_iscdi=true |