Loading…

Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems

This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the sta...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2021-04, Vol.40 (3), Article 80
Main Authors: Garshasbi, M., Nikazad, T., Sanaei, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3
cites cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 40
creator Garshasbi, M.
Nikazad, T.
Sanaei, F.
description This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.
doi_str_mv 10.1007/s40314-021-01474-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499987465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499987465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAVaWWAf8lzhZovIrVWIDa8tJnkuqOA52UpUV3IEbchJcUokdq7eY-UbzBqFzSi4pIfIqCMKpSAijCaFCimR7gGY0JzIhnLBDNGOM5wnPCD9GJyGsCeGSCjFDHzewgdb1FroBO4M1rpztx0EPjet0i3Xfe6erV2ycj2LodQXfn19DYwEbr6u9zbpN061w6cau1v4dR6hswWLtm7ATjHcW135cYQ8t6AA4vIcBbDhFR0a3Ac72d45e7m6fFw_J8un-cXG9TCpOiyGpWZrKTEpGKBFVZTgzhaxFZvI6pUYWhmcCpNm9ntYpFFxkucigTGkpy9JoPkcXU25s9jZCGNTajT5WD4qJoihyKbI0utjkqrwLwYNRvW9sfEhRonZDq2loFYdWv0OrbYT4BIVo7lbg_6L_oX4Ax4KElg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499987465</pqid></control><display><type>article</type><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><source>Springer Nature</source><creator>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</creator><creatorcontrib>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</creatorcontrib><description>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01474-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Boundary conditions ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Finite difference method ; Iterative methods ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Perturbation ; Stability analysis</subject><ispartof>Computational &amp; applied mathematics, 2021-04, Vol.40 (3), Article 80</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</citedby><cites>FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</cites><orcidid>0000-0002-7310-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garshasbi, M.</creatorcontrib><creatorcontrib>Nikazad, T.</creatorcontrib><creatorcontrib>Sanaei, F.</creatorcontrib><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite difference method</subject><subject>Iterative methods</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Perturbation</subject><subject>Stability analysis</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAVaWWAf8lzhZovIrVWIDa8tJnkuqOA52UpUV3IEbchJcUokdq7eY-UbzBqFzSi4pIfIqCMKpSAijCaFCimR7gGY0JzIhnLBDNGOM5wnPCD9GJyGsCeGSCjFDHzewgdb1FroBO4M1rpztx0EPjet0i3Xfe6erV2ycj2LodQXfn19DYwEbr6u9zbpN061w6cau1v4dR6hswWLtm7ATjHcW135cYQ8t6AA4vIcBbDhFR0a3Ac72d45e7m6fFw_J8un-cXG9TCpOiyGpWZrKTEpGKBFVZTgzhaxFZvI6pUYWhmcCpNm9ntYpFFxkucigTGkpy9JoPkcXU25s9jZCGNTajT5WD4qJoihyKbI0utjkqrwLwYNRvW9sfEhRonZDq2loFYdWv0OrbYT4BIVo7lbg_6L_oX4Ax4KElg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Garshasbi, M.</creator><creator>Nikazad, T.</creator><creator>Sanaei, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7310-6776</orcidid></search><sort><creationdate>20210401</creationdate><title>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</title><author>Garshasbi, M. ; Nikazad, T. ; Sanaei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite difference method</topic><topic>Iterative methods</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Perturbation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garshasbi, M.</creatorcontrib><creatorcontrib>Nikazad, T.</creatorcontrib><creatorcontrib>Sanaei, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garshasbi, M.</au><au>Nikazad, T.</au><au>Sanaei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><artnum>80</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper presents an iterative procedure based on an implicit finite difference method to solve a mathematical model of drug delivery from a planar matrix with a moving boundary condition. This model includes the diffusion equation with space–time fractional-order derivatives. We establish the stability and convergence analysis of the method. We compare the numerical results with the scale-invariant and the homotopy perturbation solutions for different space–time-fractional orders and the problem parameters.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01474-x</doi><orcidid>https://orcid.org/0000-0002-7310-6776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2021-04, Vol.40 (3), Article 80
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2499987465
source Springer Nature
subjects Applications of Mathematics
Applied physics
Boundary conditions
Computational mathematics
Computational Mathematics and Numerical Analysis
Finite difference method
Iterative methods
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Matrix methods
Perturbation
Stability analysis
title Development of a computational approach for a space–time fractional moving boundary problem arising from drug release systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20computational%20approach%20for%20a%20space%E2%80%93time%20fractional%20moving%20boundary%20problem%20arising%20from%20drug%20release%20systems&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Garshasbi,%20M.&rft.date=2021-04-01&rft.volume=40&rft.issue=3&rft.artnum=80&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01474-x&rft_dat=%3Cproquest_cross%3E2499987465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d255767720104ccf32f97d46f8d51f79f364e7f14745d5e9346846eb51b7bbfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499987465&rft_id=info:pmid/&rfr_iscdi=true