Loading…

Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics

Machine learning and statistical techniques are powerful tools for analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent free sharing of this data. Encryption techniques such as fully homomorphic encryption (FHE) enable evaluation ov...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys 2020-09, Vol.53 (4), p.1-35
Main Authors: Wood, Alexander, Najarian, Kayvan, Kahrobaei, Delaram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine learning and statistical techniques are powerful tools for analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent free sharing of this data. Encryption techniques such as fully homomorphic encryption (FHE) enable evaluation over encrypted data. Using FHE, machine learning models such as deep learning, decision trees, and Naive Bayes have been implemented for privacy-preserving applications using medical data. These applications include classifying encrypted data and training models on encrypted data. FHE has also been shown to enable secure genomic algorithms, such as paternity and ancestry testing and privacy-preserving applications of genome-wide association studies. This survey provides an overview of fully homomorphic encryption and its applications in medicine and bioinformatics. The high-level concepts behind FHE and its history are introduced, and details on current open-source implementations are provided. The state of fully homomorphic encryption for privacy-preserving techniques in machine learning and bioinformatics is reviewed, along with descriptions of how these methods can be implemented in the encrypted domain.
ISSN:0360-0300
1557-7341
DOI:10.1145/3394658