Loading…
Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics
Machine learning and statistical techniques are powerful tools for analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent free sharing of this data. Encryption techniques such as fully homomorphic encryption (FHE) enable evaluation ov...
Saved in:
Published in: | ACM computing surveys 2020-09, Vol.53 (4), p.1-35 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning and statistical techniques are powerful tools for analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent free sharing of this data. Encryption techniques such as fully homomorphic encryption (FHE) enable evaluation over encrypted data. Using FHE, machine learning models such as deep learning, decision trees, and Naive Bayes have been implemented for privacy-preserving applications using medical data. These applications include classifying encrypted data and training models on encrypted data. FHE has also been shown to enable secure genomic algorithms, such as paternity and ancestry testing and privacy-preserving applications of genome-wide association studies.
This survey provides an overview of fully homomorphic encryption and its applications in medicine and bioinformatics. The high-level concepts behind FHE and its history are introduced, and details on current open-source implementations are provided. The state of fully homomorphic encryption for privacy-preserving techniques in machine learning and bioinformatics is reviewed, along with descriptions of how these methods can be implemented in the encrypted domain. |
---|---|
ISSN: | 0360-0300 1557-7341 |
DOI: | 10.1145/3394658 |