Loading…

An Integrated Approach to Testing Dynamic, Multilevel Theory: Using Computational Models to Connect Theory, Model, and Data

Some of the most influential theories in organizational sciences explicitly describe a dynamic, multilevel process. Yet the inherent complexity of such theories makes them difficult to test. These theories often describe multiple subprocesses that interact reciprocally over time at different levels...

Full description

Saved in:
Bibliographic Details
Published in:Organizational research methods 2021-04, Vol.24 (2), p.251-284
Main Authors: Ballard, Timothy, Palada, Hector, Griffin, Mark, Neal, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Some of the most influential theories in organizational sciences explicitly describe a dynamic, multilevel process. Yet the inherent complexity of such theories makes them difficult to test. These theories often describe multiple subprocesses that interact reciprocally over time at different levels of analysis and over different time scales. Computational (i.e., mathematical) modeling is increasingly advocated as a method for developing and testing theories of this type. In organizational sciences, however, efforts that have been made to test models empirically are often indirect. We argue that the full potential of computational modeling as a tool for testing dynamic, multilevel theory is yet to be realized. In this article, we demonstrate an approach to testing dynamic, multilevel theory using computational modeling. The approach uses simulations to generate model predictions and Bayesian parameter estimation to fit models to empirical data and facilitate model comparisons. This approach enables a direct integration between theory, model, and data that we believe enables a more rigorous test of theory.
ISSN:1094-4281
1552-7425
DOI:10.1177/1094428119881209