Loading…
An Integrated Approach to Testing Dynamic, Multilevel Theory: Using Computational Models to Connect Theory, Model, and Data
Some of the most influential theories in organizational sciences explicitly describe a dynamic, multilevel process. Yet the inherent complexity of such theories makes them difficult to test. These theories often describe multiple subprocesses that interact reciprocally over time at different levels...
Saved in:
Published in: | Organizational research methods 2021-04, Vol.24 (2), p.251-284 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Some of the most influential theories in organizational sciences explicitly describe a dynamic, multilevel process. Yet the inherent complexity of such theories makes them difficult to test. These theories often describe multiple subprocesses that interact reciprocally over time at different levels of analysis and over different time scales. Computational (i.e., mathematical) modeling is increasingly advocated as a method for developing and testing theories of this type. In organizational sciences, however, efforts that have been made to test models empirically are often indirect. We argue that the full potential of computational modeling as a tool for testing dynamic, multilevel theory is yet to be realized. In this article, we demonstrate an approach to testing dynamic, multilevel theory using computational modeling. The approach uses simulations to generate model predictions and Bayesian parameter estimation to fit models to empirical data and facilitate model comparisons. This approach enables a direct integration between theory, model, and data that we believe enables a more rigorous test of theory. |
---|---|
ISSN: | 1094-4281 1552-7425 |
DOI: | 10.1177/1094428119881209 |