Loading…
Global patterns in leaf stoichiometry across coastal wetlands
Aim Coastal wetlands provide crucial ecosystem functions and services, such as coastal protection, nutrient retention and C sequestration. Despite the important roles in global C, N and P cycling, the global variation in leaf stoichiometry across coastal wetlands remains unclear. Location Global. Ti...
Saved in:
Published in: | Global ecology and biogeography 2021-04, Vol.30 (4), p.852-869 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aim
Coastal wetlands provide crucial ecosystem functions and services, such as coastal protection, nutrient retention and C sequestration. Despite the important roles in global C, N and P cycling, the global variation in leaf stoichiometry across coastal wetlands remains unclear.
Location
Global.
Time period
1980–2018.
Major taxa studied
Vascular plants.
Methods
By compiling a global dataset of 698 data records in 205 sites, we carried out systematic analyses of the world‐wide trends and their determinants of leaf element contents and ratios of plants across coastal wetlands.
Results
Leaf N and P contents increased significantly, but C:N, C:P and N:P ratios decreased with increasing latitude in coastal wetlands. The mean annual temperature was the predominant driver of leaf N, P and C:N, whereas soil N:P was a good predictor of leaf C:P and N:P ratios. Furthermore, N increased faster with P in plant leaves of coastal wetlands compared with terrestrial ecosystems. Within coastal wetlands, herb‐dominated salt marshes had a significantly higher leaf P content, lower leaf N:P ratio and lower scaling exponent of leaf N to P than tree‐dominated mangroves.
Main conclusions
The similar latitudinal patterns of leaf stoichiometry in coastal wetlands compared with terrestrial ecosystems reflected the similar influences of temperature. However, different slopes of leaf P and N:P ratios and N and P scaling relationships between these two ecosystems suggested that different salinity and tidal inundation levels result in different strategies of N and P use in coastal wetland plants. These differences in leaf stoichiometry between ecosystems and between different types of coastal wetlands might need to be emphasized in future biogeochemical modelling owing to their different roles in global nutrient and carbon cycling. |
---|---|
ISSN: | 1466-822X 1466-8238 |
DOI: | 10.1111/geb.13254 |