Loading…

The total intrinsic curvature of curves in Riemannian surfaces

We deal with irregular curves contained in smooth, closed, and compact surfaces. For curves with finite total intrinsic curvature, a weak notion of parallel transport of tangent vector fields is well-defined in the Sobolev setting. Also, the angle of the parallel transport is a function with bounded...

Full description

Saved in:
Bibliographic Details
Published in:Rendiconti del Circolo matematico di Palermo 2021-04, Vol.70 (1), p.521-557
Main Authors: Mucci, Domenico, Saracco, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We deal with irregular curves contained in smooth, closed, and compact surfaces. For curves with finite total intrinsic curvature, a weak notion of parallel transport of tangent vector fields is well-defined in the Sobolev setting. Also, the angle of the parallel transport is a function with bounded variation, and its total variation is equal to an energy functional that depends on the “tangential” component of the derivative of the tantrix of the curve. We show that the total intrinsic curvature of irregular curves agrees with such an energy functional. By exploiting isometric embeddings, the previous results are then extended to irregular curves contained in Riemannian surfaces. Finally, the relationship with the notion of displacement of a smooth curve is analyzed.
ISSN:0009-725X
1973-4409
DOI:10.1007/s12215-020-00516-3