Loading…
Structural Basis for SARS-CoV-2 Envelope Protein in Recognition of Human Cell Junction Protein PALS1
Abstract The COVID-19 pandemic caused by the SARS-CoV-2 virus has created a global health and economic emergency. SARS-CoV-2 viruses hijack human proteins to promote their spread and virulence including the interactions involving the viral envelope (E) protein and human proteins. To understand the s...
Saved in:
Published in: | bioRxiv 2021-02 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The COVID-19 pandemic caused by the SARS-CoV-2 virus has created a global health and economic emergency. SARS-CoV-2 viruses hijack human proteins to promote their spread and virulence including the interactions involving the viral envelope (E) protein and human proteins. To understand the structural basis for SARS-CoV-2 viral-host recognition, we used cryo-electron microscopy to determine a structure for the human cell junction protein PALS1 and SARS-CoV-2 E protein complex. The structure shows that the E protein C-terminal DLLV motif recognizes a pocket formed exclusively by hydrophobic residues from the PDZ and SH3 domains in PALS1. Our structural analysis provides an explanation for the observation that the viral E protein recruits PALS1 from lung epithelial cell junctions resulting in vascular leakage, lung damage, viral spread, and virulence. In addition, our structure provides novel targets for peptide- and small-molecule inhibitors that could block the PALS1-E interactions to reduce the E-mediated damage to vascular structures. Competing Interest Statement The authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2021.02.22.432373 |