Loading…
Out-of-sample realized volatility forecasting: does the support vector regression compete combination methods
This article investigates whether the nonlinear support vector regression method under the Heterogeneous Auto-Regressive model (SVR-HAR) can compete for combination methods in terms of out-of-sample realized volatility forecasting. Empirical analyses are conducted based on the CSI 300 index high-fre...
Saved in:
Published in: | Applied economics 2021-04, Vol.53 (19), p.2192-2205 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article investigates whether the nonlinear support vector regression method under the Heterogeneous Auto-Regressive model (SVR-HAR) can compete for combination methods in terms of out-of-sample realized volatility forecasting. Empirical analyses are conducted based on the CSI 300 index high-frequency data, two new combination methods are employed and compared with the forecasting ability of the SVR method. The empirical results show that SVR-HAR models outperform individual models and all the combination methods, although the new combination methods are superior to other combination strategies. Specifically, HAR models with realized semi-variances as regressors obtains the lowest forecasting errors, confirming the strong forecasting ability of nonlinear SVR method and the realized semi-variances. The portfolio performance further confirms the highest economic value for models employing realized semi-variances and nonlinear SVR method in terms of volatility forecasting. |
---|---|
ISSN: | 0003-6846 1466-4283 |
DOI: | 10.1080/00036846.2020.1856326 |