Loading…
Neutrophil and monocyte dysfunctional effector response towards bacterial challenge in critically-ill COVID-19 patients
Abstract COVID-19 displays diverse disease severities and symptoms. Elevated inflammation mediated by hypercytokinemia induces a detrimental dysregulation of immune cells. However, there is limited understanding of how SARS-CoV-2 pathogenesis impedes innate immune signaling and function against seco...
Saved in:
Published in: | bioRxiv 2020-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract COVID-19 displays diverse disease severities and symptoms. Elevated inflammation mediated by hypercytokinemia induces a detrimental dysregulation of immune cells. However, there is limited understanding of how SARS-CoV-2 pathogenesis impedes innate immune signaling and function against secondary bacterial infections. We assessed the influence of COVID-19 hypercytokinemia on the functional responses of neutrophils and monocytes upon bacterial challenges from acute and corresponding recovery COVID-19 ICU patients. We show that severe hypercytokinemia in COVID-19 patients correlated with bacterial superinfections. Neutrophils and monocytes from acute COVID-19 patients showed severely impaired microbicidal capacity, reflected by abrogated ROS and MPO production as well as reduced NETs upon bacterial challenges. We observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes leading to a suppressive autocrine and paracrine signaling during bacterial challenges. Our data provide insights into the innate immune status of COVID-19 patients mediated by their hypercytokinemia and its transient effect on immune dysregulation upon subsequent bacterial infections Competing Interest Statement The authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2020.12.01.406306 |